FINAL

03.13- 11/7/97-00146

REMEDIAL INVESTIGATION REPORT OPERABLE UNIT NO. 9 (SITE 65)

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

VOLUME II

CONTRACT TASK ORDER 0312

NOVEMBER 7, 1997

Prepared For:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

SDG# 65MW05

SERVICES, INC.

SAMPLES AND FRACTIONS REVIEWED

Sample Ident	ifications		Ar	nalytic	al Frac	tions
BAKER ID	RFW ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65-MW05A-00	AE9046	SOIL	x	х	х	х
65-MW05A-04	AE9043	SOIL	Х	Х	Х	Х
65-MW07A-00	AE9040	SOIL	Х	Х	Х	Х
65-MW07A-05	AE9038	SOIL	X	Х	Х	Х
MS - Matrix Spike	MD - Matrix Spike	Matrix Dupli	cate			
Individual fractions v	vere reviewed as follo	ows:				
		Primary		<u>Seco</u>	ndary	
VOA - Volatiles (CLP		Dan Heil		_	Wats	on

SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticide\PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1)

Dan Heil Gene Watson Jackie Cleveland Gene Watson Paul Humburg

Witte a state of

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65MW05

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

006

ſ

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations (continued)

Specific Finding:

1. The continuing calibration, QS0407, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all-positive results as estimated (J).

VBLKAE603 65MW07A05 65MW05A04 65MW05A00 bromomethane vinyl chloride 2-butanone

2. The continuing calibration, QS0411, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9707 65MW07A00 chloromethane vinyl chloride chloroform 2-butanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

r

007

VOLATILE ANALYSIS

PAGE - 3

Method Blanks (continued)

Specific findings:

3 The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65MW05A00 65MW05A04 65MW07A05	methylene chloride	CRQL
65MW07A00	acetone	CRQL
65MW05A00	xylene (total)	CRQL

Trip Blanks

The associate trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associate rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

SR

VOLATILE ANALYSIS

PAGE - 4

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required:

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U =
- The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u> </u>	SPECIFIC FINDINGS
VBLKAE603 65MW07A05 65MW05A04 65MW05A00	bromomethane vinyl chloride 2-butanone	+	J	1
VBLKAE9707 65MW07A00	chloromethane vinyl chloride chloroform 2-butanone	+	J	2
65MW05A00 65MW05A04 65MW07A05	methylene chloride	+	CRQL	. 3
65MW07A00	acetone	. +	CRQL	. 3
65MW05A00	xylene (total)	+	CROL	. 3

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

011

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65MW05

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

carbazole

0.012

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC0414, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAE9132B 65MW07A05 65MW07A00 65MW05A04 65MW05A00 hexachlorocyclopentadiene 2,4-dinitrophenol

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

RESUB

3. The samples listed below have been qualified for method blank contamination. The gualification are for all method blanks.

65MW05A00	di-n-butylphthalate	CRQL
65MW05A04		
65MW07A00		
65MW07A05		•

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks (continued)

Specific Finding:

4. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

0 014

an an an an an an an an an Anna an Anna

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

015

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
SBLKAE9132B	hexachlorocyclo- pentadiene	+	J _	2
65MW07A05	2,4-dinitrophenol			
65MW07A00				•
65MW05A04				
65MW05A00				
65MW05A00	di-n-butylphthalate	+	CRQ	L 3
65MW05A04				
65MW07A00				
65MW07A05				
All samples	"B" flagged TICs	+	R	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

lesus

016

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 05A-00

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level E data package.

Specific Finding

1. The initial calibration on 05/18/95 contained a compound with a %RSD greater than 20%. For the samples and non compliant compound listed below, qualify all positive and non-detect results as estimated J/UJ.

65MW-07A00DL

4,4'-DDD

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level E data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

<u>OC</u> Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level E data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all samples with the exception of the 1:2 dilution of sample 65MW07A00DL. A dilution of 1:2 should not affect surrogate recoveries so the data was qualified.

Specific Finding

 The positive and non-detect results in the following sample are qualified as estimated, J/UJ, due to TCMX and DCB recoveries which were below the QC limits, but above 10%.

65MW07A00DL

RESUB

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Some positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level E QC. Some of the reported results exhibited column quantitation differences which were greater than 25%. One sample required a dilution to bring detected target compound within the calibration range.

Specific Finding

- 3. All positive results which exhibited column quantitation %Ds which are greater than 25% but less than 100% are qualified as estimated, J.
- 4. For sample 65-MW-07A-00, reject all Z flagged results and report all D flagged results for those compounds from the dilution analysis.
- 5. All positive results which exhibited column quantitation %Ds which are greater than or equal to 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level E data package.

 $\cap G$

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \ \mathbf{detected}$
- J = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and *un*usable
- **NJ** = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

020

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
65-MW-07A-00DL	4,4'-DDD	+/U	J/UJ	1
		······································		and the second
65-MW-07A-00DL	All	+/U	J/UJ	2
ALL SAMPLES	ALL P >25%, But <100%	· +	J	3
65-MW-07A00 65-MW-07A-00DL	ALL Z flagged ALL but D flagged	+ +/U	R	4
ALL SAMPLES	All P ≥ 100%	+	NJ	5

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# N\A, the analysis of four (4) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals and Cyanide. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blanks exhibited contamination for the following elements.

Calcium	8.94	mg/kg
Cobalt	5.09	mg/kg
Zinc	3.57	mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

Interferences

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

Spike Recovery

No spike for this SDG.

Duplicate

No duplicate for this SDG.

LCS

No deficiencies in this section.

ハコス

BESUB

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	<u>OL</u>	SPECIFIC FINDING
All soil samples	Ca, Co and Zn.	+	U	1

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

GESUB

SDG# 65DW04

SERVICES, INC.

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			Analytical Fractions			
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65-DW04-05	AE9158	SOIL	Х	х	х	х
65-DW04-00	AE9167	SOIL	Х	х	Х	Х

Individual fractions were reviewed as follows:

VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticide/PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1)

Primary	<u>Secondary</u>
Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP SOW; the National Functional Guidelines for Organic Data Review, June, 1991; NEESA Level C requirements, and good professional judgement. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04

Holding Times

All of the analyses were performed within fourteen (14) days from date of collection. No qualifications are required.

Tuning

All the BFB tunes met the tuning criteria set forth by the method and the Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibration exhibited acceptable %RSDs and RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations exhibited %Ds that were non compliant. All RRFs were acceptable.

PAGE - 2

Continuing Calibrations - continued

Specific findings:

1. The continuing calibration QS0411 contained compounds with %Ds greater than 25%, but less than 50%. For the samples listed below, qualify all positive results as estimated (J).

All samples

chloromethane vinyl chloride chloroform 2-butanone

Internal Standards

All of the internal standard EICP areas are within the QA/QC limits of the continuing calibration EICP internal standard areas. No gualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for acetone, 2butanone, 2-hexanone, and 1,1,2,2-tetrachloroethane. All samples will be qualified based on their associated method blank.

Specific findings:

2. The following samples have been qualified for method blank contamination.

65DW0400	acetone	+BJ	CROL	2
65DW0405	acetone	+ B	NA	2

Trip Blanks

A trip blank was not identified in this SDG.

System Monitoring Compounds

All of the surrogate recoveries for the samples were acceptable. No qualifications are required.

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

A MS/MSD was not identified in this SDG.

Field Duplicates

A field duplicate pair was not identified.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall performance of the GC/MS system was acceptable. The overall quality of the data package is acceptable. The data validator estimates that less than 5% of the data is qualified or rejected.

003

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U =
- The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All samples	chloromethane vinyl chloride chloroform 2-butanone	+	J	1
65DW0400	acetone	+BJ	CRQL	. 2
65DW0405	acetone	+ B	NA	2

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

-- ...

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; Region III Modifications to the National Functional Guidelines for Organic Data Review, and DQO Level III. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

 The initial calibration analyzed on, 03/31/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

2,4-dinitrophenol

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, CCA0413, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65DW0400	2-nitrophenol
SBLKAE9260A	4-chloroaniline

3. The continuing calibration, CCA0413, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65DW0400 4,6-dinitro-2-methylphenol SBLKAE9260A

4. The continuing calibration, CCA0413, contained compounds with %Ds greater than 90% D. For the samples and non compliant compounds listed below, gualify all positive results as estimated (J) and reject all non detects (R).

65DW0400 2,4-dinitrophenol SBLKAE9260A

5. The continuing calibration, CCA0417, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65DW0405

2-nitroaniline 2,4-dinitrophenol

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding:

6. The continuing calibration, CCA0417, contained compounds with %Ds greater than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and reject all non detects (R).

65DW0405

4-nitroaniline

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate, bis(2-ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

7. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0400 65DW0405	di-n-butylphthalate	CRQL
65DW0400	bis(2-ethylhexyl) phthalate	CRQL

8. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

RESUB

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- **J** = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- \mathbf{K} = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CROL = The sample result for the blank contaminant is less than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CROL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

Uis

SUMMARY OF DATA QUALIFICATIONS

	SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
	65DW0400 SBLKAE9260A	2-nitrophenol 4-chloroaniline	+ .	J _	2
I	65DW0400	4,6-dinitro-2- methylphenol	+/-	J/UJ	3
	SBLKAE9260A				
	65DW0400 SBLKAE9260A	2,4-dinitrophenol	+/-	J/R	4
	65DW0405	2-nitroaniline 2,4-dinitrophenol	÷	J	5
	65DW0405	4-nitroaniline	+/-	J/R	6
	65DW0400 65DW0405	di-n-butylphthalate	÷	CRQL	7
	65DW0400	bis(2-ethylhexyl) phthalate	·+	CRQL	7
	All samples	"B" flagged TICs	+	R	8

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

RESUB

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW04

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4,4'-DDD

 ~ 1

resuls

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

There were no field QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all soil samples with the exception of DCB on one (1) column in sample 65DW0400. The recovery was above the QC limits and there were no positive results in the sample. Qualifications were not required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

14

PAGE - 3

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

No positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. No further qualifications were required.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the gualification of the data.

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

vesub

Metais

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# DW0400, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

resub

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blanks exhibited contamination for the following elements.

PBS		
Calcium	8.94	mg/kg
Cobalt	5.09	mg/kg
Zinc	3.57	mg/kg

The calibration blanks exhibited contamination for the following elements.

Cobalt 44.6 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

<u>LCS</u>

No deficiencies in this section.

resub

SAMPLE ID	ANALYTE	DL		SPECIFIC FINDING
All soil samples	Ca, Co and Zn.	+	U	1

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

require

JOB# 3318

SAMPLES AND FRACTIONS REVIEWED

Sample Identi	fications		<u> </u>	nalytic	al Frac	tions
BAKER ID	QUANT ID	<u>Matrix</u>	<u>V0A</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
-65RB01	AE9413	WATER	х	х	х	х
6 5TB01-	AE9419	WATER	Х			
65DW01-00-	AE9458	SOIL	Х	Х	Х	Х
64DW0104	AE9428	SOIL	Х	Х	Х	Х
65DW0104D-	AE9430	SOIL	Х	Х	Х	Х
65DW0200	AE9424	SOIL	Х	Х	Х	Х
65DW0202-	AE9426	SOIL	Х	Х	Х	Х
65MW06A00	AE9456	SOIL	Х	Х	Х	Х
65MW06A00MS	AE9456MS	SOIL	Х	Х	Х	Х
65M₩0 6A00M D_	AE9456MD	SOIL	Х	Х	Х	Х
65MW06A00D	AE9422	SOIL	Х	Х	Х	Х
65MW06A03	AE9454	SOIL	Х	Х	Х	Х
65 58070 0	AE9448	SOIL	Х	Х	Х	Х
65SB0700D	AE9450	SOIL	Х	Х	Х	Х
65SB0704	AE9452	SOIL	Х	Х	Х	Х
65SB0900	AE9444	SOIL	Х	Х	Х	Х
65SB0902	AE9446	SOIL	Х	Х	Х	Х
65SB1000	AE9440	SOIL	Х	Х	Х	X
65SB1001	AE9442	SOIL	Х	X	X	Х
65SB1100	AE9436	SOIL	Х	Х	Х	Х
65SB1104	AE9432	SOIL	Х	Х	Х	Х
65SB1104MS	AE9432MS	SOIL	Х	Х	Х	Х
65SB1104MD	AE9432MD	SOIL	Х	Х	Х	Х
65SB1104D	AE9434D	SOIL	Х	Х	Х	Х

Total Number of Samples (Water/Soil)

2/22 1/22 1/22 1/22

. . ..

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # DW01; CASE # 3318

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9691 bromoform 65RB01

3. The continuing calibration, WS0417, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9942	bromoform
65TBO1	2-hexanone

4. The continuing calibration, QS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, gualify all positive results as estimated (J).

VBLKAE9715 65MW06A00MSD 65MW06A00D 65DW0200 65DW0202 65DW0104 65DW0104D 65SB1100 65SB1104MS 65SB1104MSD 65SB1104 65SB1104D chloroethane 2-hexanone

U

VOLATILE ANALYSIS

PAGE - 3

Continuing calibrations (continued)

Specific Finding:

5. The continuing calibration, QS0413, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9944 65DW0202DL 65SB1000 65SB1001 65SB0900 65SB0902 65SB0700 65SB0704 65MW06A00 65DW0100

chloroethane ·

 The continuing calibration, QS0414, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, gualify all positive results as estimated (J).

VBLKAE9945 65SB0700D 65SMW06A03 chloroethane 4-methyl-2-pentanone 2-hexanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

VOLATILE ANALYSIS

PAGE - 4

Method Blanks (continued)

Specific findings:

7. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65TB01	toluene	CRQL:
65DW0104 65DW0200	acetone	U
65MW06A00D 65MW06A00MS 65MW06A00MSD 65DW0100 65SB0700 65SB0900 65SB1000 65MW06A03	acetone	CROL
65MW06A03 65SB0700D	methylene chloride	CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for toluene. however, the contamination was attributed to the associated method blank. No qualifications are required.

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone and 1,2-dichloroethane. However, the contamination found in the samples was attributed to the associated method blank. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limits for MS/MSD 65MW06A00 and MS/MSD 65SB1104. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

8. For sample 65DW0202, reject all E-flagged results in favor of the D-flagged results in the diluted sample. For the diluted sample 65DW0202DL, reject all results except for the D-flagged results with corresponding E-flagged results in the original sample analysis.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
VBLKAE9691 65RB01	bromoform	+	J	2
VBLKAE9942 65TB01	bromoform 2-hexanone	+	J	3 .
VBLKAE9715 65MW06A00MS 65MW06A00MSD 65MW06A00D 65DW0200 65DW0202 65DW0104	chloroethane 2-hexanone	+	J	4
65DW0104D 65SB1100 65SB1104MS 65SB1104MSD 65SB1104 65SB1104				
VBLKAE9944 65DW0202DL 65SB1000 65SB1001 65SB0900 65SB0902 65SB0700 65SB0704 65MW06A00 65DW0100	chloroethane	+	J	5
VBLKAE9945 65SB0700D 65SMW06A03	chloroethane 4-methyl-2-pentanone 2-hexanone	+	J	6
QL denotes the q + in the DL colu	orm I qualifier supplied by ualifier used by the data nn denotes a positive res n denotes a non detect re	v the la validati ult		ry

Page - 2

SAMPLE ID	ANALYTE ID	DL	OL	SPECIFIC FINDINGS
65TB01	toluene	+	CRQ	L:7
65DW0104 65DW0200	acetone	+	U	7
65MW06A00D 65MW06A00MS 65MW06A00MSD 65DW0100 65SB0700 65SB0900 65SB1000 65MW06A03	acetone	+	CRQ	L 7
65MW06A03 65SB0700D	methylene chloride	+	CRQ	L 7
65DW0202	All E-flagged results	+	R	8
65DW0202DL	All results except D-flagged results	+/-	R	8

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # DW01; CASE # 3318

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

carbazole

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC0419, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAE9604B 65MW06A00MS 65MW06A00D 65DW0200 65DW0104 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1104D 65SB1104MS 65SB1104MS 65SB1104MSD 65SB1000 65SB1001 2,2'-oxybis(1-chloropropane) 2-nitroaniline 4-nitrophenol 4-nitroaniline pentachlorophenol carbazole di-n-butylphthalate bis(2-ethylhexyl)phthalate di-n-octylphthalate

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Findings:

3. The continuing calibration, BCC0419, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

hexachlorocyclopentadiene

SBLKAE9604B 65MW06A00MS 65MW06A00D 65DW0200 65DW0104 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1104D 65SB1104MS 65SB1104MS 65SB1104MSD 65SB1000 65SB1001

4. The continuing calibration, BCC0422, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65RB01

2,4-dinitrophenol 4-nitrophenol

5. The continuing calibration, BCC0425, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW06A00 65DW0100 SBLKAE9763B 4-nitrophenol 4,6-dinitro-2-methylphenol-

SEMIVOLATILE ANALYSIS

PAGE - 4

Continuing Calibrations (continued)

Specific Findings:

6. The continuing calibration, BCC0425, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW06A00 2,4-dinitrophenol 65DW0100 SBLKAE9763B

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

7. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

All samples di-n-butylphthalate

8. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

CRQL

SEMIVOLATILE ANALYSIS

PAGE - 5

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

All spike and RPD recoveries were within advisory limits the MS/MSD 65MW06A00. However, all spike and RPD recoveries were within advisory limits the MS/MSD 65SB1104. The MS/MSD samples exhibited high RPDs for 1,4-dichlorobenzene, 1,2,4-trichlorobenzene and acenaphthene. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$
- J = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
SBLKAE9604B 65MW06A00MS 65MW06A00D 65DW0200 65DW0104 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1104D 65SB1104MS 65SB1104MS 65SB1104MSD 65SB1000 65SB1001	2,2'-oxybis (1-chloropropane) 2-nitroaniline 4-nitrophenol 4-nitroaniline pentachlorophenol carbazole di-n-butylphthalate bis(2-ethylhexyl)phthalate di-n-octylphthalate	+ ate	J	2
SBLKAE9604B 65MW06A00MSD 65MW06A00D 65DW0200 65DW0104 65DW0104D 65DW0202 65SB1104 65SB1104D 65SB1104D 65SB1104MS 65SB1104MSD 65SB1000 65SB1001	hexachlorocyclo- pentadiene	+/-	J/UJ	3
65RB01	2,4-dinitrophenol 4-nitrophenol	+	J	4
QL denotes the c + in the DL colu	orm I qualifier supplied by ualifier used by the data v mn denotes a positive res	validatio ult		y

- in the DL column denotes a non detect result

-

016

Page - 2

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
65MW06A00 65DW0100 SBLKAE9763B	4-nitrophenol 4,6-dinitro-2-methylpher	+ Ion	J	5
65MW06A00 65DW0100 SBLKAE9763B	2,4-dinitrophenol	+/-	J/UJ	6
All samples	di-n-butylphthalate	+	CRQI	. 7
All samples	"B" flagged TICs	+	R	8

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW01

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4,4'-DDD

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blank data was not present in this NEESA Level C data package.

<u>OC Blanks</u>

The field rinseate blank analzyed in this SDG exhibited contamination for the compound 4,4'-DDT at 0.24 ug/L. This concentration corresponds to a soil contamination level of 8.0 ug/Kg. The samples exhibiting positive results for 4,4'-DDT were compared to the rinseate blank contamination level for qualifications.

Specific Finding

2.	Compound	Concentration	Action Level
•	4,4'-DDT	0.24ug/L ↔ 8.0 ug/Kg	40 ug/Kg
	<u> </u>		
	65DW0100		

65DW0104 65SB0700D 65SB0900

019

PAGE - 3

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries in the field samples were within QC limits in all soil samples with the exception sample 65SB1104D. The recoveries for TCMX and DCB were below the QC limits.

Specific Finding

3. The reported positive and non-detect results in the following sample are qualified as estimated, J/UJ, due to TCMX and DCB recoveries below the QC limits on one (1) or both columns.

65SB1104D

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pairs of samples 65SB01104 and 65MW06A00 exhibited acceptable recoveries and RPDs for all spike compounds. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65DW0104 exhibited positive results with poor precision results for three (3) compounds. The compounds were detected in the original sample but not the field duplicate sample. The field duplicate pair of sample 65SB0700 exhibited positive results with poor precision for two (2) compounds. The compound 4,4'-DDT was negated in the field duplicate sample due to rinseate blank contamination, but the concentration in the original sample was above the action limit for qualification. The field duplicate pairs of samples 65SB1104 and 65MW06A00 did not exhibit positive results for target compounds. Positive results reported in the field duplicate pairs of samples 3.

PAGE - 4

Field Duplicates, continued

Specific Finding

4. The positive results reported in the following samples for the noted compounds are gualified as estimated, J, due to poor duplicate precision.

65DW0104 65DW0104D	4,4'-DDE 4,4'-DDD ENDRIN ALDEHYDE
65SB0700	4,4'-DDE
65SB0700D	4,4'-DDT

Analyte Identification/Quantitation

Positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because sample chromatograms were not included in the NEESA Level C data package. Several reported compounds exhibited column quantitations greater than 25%. Three sample required dilution to bring target compounds within the calibration range.

Specific Findings

- 5. Results reported with a Z flag indicating that the compound is outside the linear range of the calibration range are rejected and replaced with the D flagged result from the dilution analysis of the sample. All other results reported from the dilution analysis are rejected in favor of the results reported from the undiluted analysis of the sample.
- 6. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 7. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

PAGE - 5

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package. Sample chromatograms should have been included in the Level C package, but were not.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- \mathbf{K} = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CROL** = The sample result for the blank contaminant is less than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CROL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank gualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	OL	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1
65DW0100 65DW0104 65SB0700D 65SB0900	4,4'-DDT	+	U	2
65SB1104D	All	+/U	J/UJ	3
65DW0104 65DW0104D	4,4'-DDE 4,4'-DDD ENDRIN ALDEHYDE	+	J	4
65SB0700 65SB0700D	4,4'-DDE 4,4'-DDT			
All	All Z flagged	+	R	5
ALL	ALL P >25%, BUT ≤ 100%	+	J	6
ALL	ALL P > 100%	- -	NJ	7

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# DW0104, the analysis of eighteen (18) field soil samples and one Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

<u>Calibration</u>

No deficiencies in this section.

Preparation and Field Blank

1. The calibration blanks exhibited contamination for the following elements.

Beryllium 1.4 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

2.

The preparation blanks exhibited negative bias for the following elements.

PBS			PBW	PBW			
Cobalt	-6.1	mg/kg	Cobalt	-42.7	ug/l		
Iron	-3.13	mg/kg					

All positive and non-detect results below ten times the negative bias will be qualified as estimated, "J" or "UJ".

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

3. The Matrix Spike recovery for Zinc was below the lower control limits. All positive and non-detect results are qualified as estimated, "J' or "UJ".

Duplicate

4. The Duplicate analyses for Iron, Lead, Manganese and Zinc were outside the control limits. All positive results are qualified as estimated, "J". The RPD for Aluminum was not greater than 35% and will not be qualified.

<u>LCS</u>

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC <u>FINDING</u>
All samples	Be.	+	U	1
All soil samples All water samples	Co and Fe. Co.	+/U	J/UJ	2
All soil samples	Zn.	+/U	J/UJ	3
All soil samples	Fe, Pb, Mn and Zn.	+	J	4

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

:

Inorganics Major and Minor findings

- 1. Holding times No major or minor findings for this section.
- 2. Calibration No major or minor findings for this section.
- 3. Blanks Minor findings for Beryllium, Cobalt and Iron for this section.
- 4. Interferences No major or minor findings for this section.
- Matrix Spikes Minor findings for Zinc for this section.
- 6. Duplicates Minor findings for Iron, Lead, Manganese and Zinc for this section.
- 7. LCS No major or minor findings for this section.
- Serial Dilutions
 No major or minor findings for this section.

JOB# 3333

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		Analytical Fractions				
BAKER ID	QUANT ID	<u>Matrix</u>	<u>V0A</u>	<u>sv</u>	<u>P/P</u>	TAL
65RB03 65TB02	AE9667 AE9673	WATER WATER	X X	х	Х	х
65SB0600	AE9659	SOIL	X	Х	Х	Х
65SB0602 65SB0800	AE9661 AE9665	SOIL SOIL	X X	XX	X X	X X
65SB0804	AE9663	SOIL	x	x	x	X
		······				
Total Number of S	amples (Water/Soil)		2/4	1/4	1/4	1/4

MS - Matrix Spike

MD - Matrix Spike Duplicate

Individual fractions were reviewed as follows:

	Primary	Secondary
 VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticide/PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1) 	Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65RB0; CASE # 3333

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No gualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0412, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9691 bromoform 65TB02 65RB03

3. The continuing calibration, WS0414, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAE9945 chloroethane 65SB0600 65SB0602 65SB0800

4. The continuing calibration, QS0420B, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0294	chloromethane
65SB0804	carbon tetrachloride

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65SB0602	acetone	U
65SB0600 65SB0800 65SB0804	acetone	CRQL
65SB0600 65SB0602 65SB0800	methylene chloride	CROL
65SB0602	2-butanone	CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SB0804	methylene chloride	~	CRQL	
----------	--------------------	---	------	--

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone, 1,2-dichloroethane and 2-butanone. However, the contamination found in the samples was attributed to the associated method blank and/or trip blank. No qualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No gualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
VBLKAE9691 65TB02 65RB03	bromoform	÷	J	2
VBLKAE9945 65SB0600 65SB0602 65SB0800	chloroethane	+	J	3
VBLKAF0294 65SB0804	chloromethane carbon tetrachloride	+	J	4
65SB0602	acetone	+	U	5
65SB0600 65SB0800 65SB0804	acetone	+	CROL	5
65SB0600 65SB0602 65SB0800	methylene chloride	+	CROL	5
65SB0602	2-butanone	+	CRQL	5
65SB0804	methylene chloride	+	CROL	6

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65RB0; CASE # 3333

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and the average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0422, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65RB03	2,4-dinitrophenol
SBLKAE9812B	4-nitrophenol

2. The continuing calibration, BCC0426, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65SB0600	hexachlorocyclopentadiene
65SB0602	4-nitrophenol
65SB0804	anthracene
65SB0800	di-n-octylphthalate
	indeno(1,2,3-cd)pyrene
	dibenzo(a,h)anthracene
	benzo(g,h,i)perylene

3. The continuing calibration, BCC0426, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65SB0600 65SB0602 65SB0804 65SB0800 2,4-dinitrophenol

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

4. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- UJ = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
65RB03 SBLKAE9812B	2,4-dinitrophenol 4-nitrophenol	+	J	1
65SB0600 65SB0602 65SB0804 65SB0800	hexachlorocyclo- pentadiene 4-nitrophenol anthracene di-n-octylphthalate indeno(1,2,3-cd)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene	+	ئ	2
65SB0600 65SB0602 65SB0804 65SB0800	2,4-dinitrophenol	+/-	J/UJ	3
All samples	"B" flagged TICs	+	R	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65RB03

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Finding

1. The initial calibration on instrument 5890K, 4/18/95, exhibited a compound with a %RSD greater than 20%. All positive and non-detect results in the following samples for the non-compliant compound noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

4,4'-DDD

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

The field rinseate blank analyzed in this SDG exhibited contamination for the compound 4,4'-DDT at 0.30 μ g/L. This concentration corresponds to a soil contamination level of 10.0 ug/Kg. The samples exhibiting positive results for 4,4'-DDT were compared to the rinseate blank contamination level for qualifications.

Specific Finding

<u>Compound</u> <u>Concentration</u> <u>Action Level</u>
 4,4'-DDT 0.30µg/L ↔ 10.0 µg/Kg 50 µg/Kg
 <u>U</u>
 65SB0600

65SB0602

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Surrogate Recoveries

The surrogate recoveries were within QC limits in all the samples and blanks. No qualifications were required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Positive result were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Results in one (1) sample exhibited column quantitation %Ds greater than 25%.

Specific Finding

- 3. Positive results reported with column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 4. Positive results reported with column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- **NJ** = Presumptive evidence for the presence of the material at an estimated value
- \mathbf{K} = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the gualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
All	4,4'-DDD	+/U	J/UJ	1
65SB0600 65SB0602	4,4'-DDT	+	U	2 .
AII	All P >25%, But ≤ 100%	+	J	3
All	All P > 100%	+	NJ	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# N/A, the analysis of four (4) field soil samples and no Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific OA/OC deficiency Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The calibration blanks exhibited contamination for the following elements.

Beryllium 1.4 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

2. The preparation blanks exhibited negative bias for the following elements.

PBS		PBW	
Cobalt	-6.1 mg/kg	Cobalt	-42.7 ug/l
Iron	-2.42 mg/kg		

All positive and non-detect results below ten times the negative bias will be gualified as estimated, "J" or "UJ".

Metals Data Assessment Narrative (continued - Page 2)

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

<u>LCS</u>

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All soil samples	Be.	+	U	1
All soil samples All water samples	Co and Fe. Co.	+/U	J/UJ	2

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3374 & 3375

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		Ar	Analytical Fractions			
BAKER ID	QUANT ID	Matrix	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
73TB04	AF0177	WATER	Х			
73RB0 5	AF0178	WATER	Х	Х	Х	Х
73SB0100	AF0173	SOIL	Х	Х	X	Х
73SB0101	AF0175	SOIL	Х	Х	Х	х
Total Number of St	amples (Water/Soil)	<u></u>	2/2	1/2	1/2	1/2

Individual fractions were reviewed as follows:

ł

	Primary	<u>Secondary</u>
VOA - Volatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/P - Pesticide/PCBs (CLP, OLM01.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

HEARTLAND ENVIRONMENTAL

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # SB01; CASE # 3375

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/03/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

acetone

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0421, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0412	acetone
73RB05	1,1-dichloroethane
`	2-butanone

3. The continuing calibration, WS0426, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF1097	bromomethane
73TB04	1,1-dichloroethane

4. The continuing calibration, QS0420B, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF0294	chloromethane
73SB0100	carbon tetrachloride
73SB0101	

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

73SB0101

2-butanone

CRQL

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

73SB0101 methylene chloride CRQL

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride acetone, 1,2-dichloroethane and 2-butanone. However, the contamination found in the samples was attributed to the associated method blank and/or trip blank. No gualifications are required.

Field Blanks

The associate field blank was not identified for this SDG. No qualifications are required.

DATA ASSESSMENT ANP N

VOLATILE ANALYS

PAGE - 4

Surrogates

All of the surrogate recoveries for the all blanks a limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for t required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The labora problems. The data reviewer estimates that less th

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

ι **006**

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
VBLKAF0412 73RB05	acetone 1,1-dichloroethane 2-butanone	+	J	2
VBLKAF1097 73TB04	bromomethane 1,1-dichloroethane	+	J	3
VBLKAF0294 73SB0100 73SB0101	chloromethane carbon tetrachloride	+ ·	J	4
73SB0101	2-butanone	+	CRQL	. 5
73SB0101	methylene chloride	+	CRQL	. 6

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

007

U

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # SB01; CASE # 3375

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 04/13/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

pentachlorophenol

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs and %Ds. No qualifications are required.

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for di-n-butylphthalate, bis(2-ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

1. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

73SB0100 di-n-butylphthalate CRQL

2. Reject all TICs flagged with the laboratory qualifier "B", due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibited any contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

۲

SEMIVOLATILE ANALYSIS

PAGE - 3

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

 $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$

- **J** = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
73SB0100	di-n-butylphthalate	+	CRO	L 1
All samples	"B" flagged TICs	+	R	2

 DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SB0100

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were acceptable for the linearity of all compounds. Raw data was not required in this Level C data package. No gualifications were required.

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

t

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

The field rinseate blank analyzed in this SDG did not exhibit contamination for target compounds.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

The surrogate recoveries were within QC limits in all the samples and blanks. No qualifications were required.

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

Positive result were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the-limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- \mathbf{K} = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the gualification of the data.

Ł

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID

DL OL SPECI

SPECIFIC FINDINGS

NO QUALIFICATIONS WERE REQUIRED

 DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

ANALYTE ID

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# SB0100, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair and one water QC sample for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blanks exhibited contamination for the following elements.

Zinc 7.52 ug/l

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as non-detect, "U".

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

<u>LCS</u>

No deficiencies in this section.

DITB

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All water samples	Zn.	+	U	1

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

018

€

JOB# 3557 & 3558

Sample Identi	fications		An	alytical	Fractic	ons
BAKER ID	QUANT ID	Matrix	<u>V0A</u>	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65TP01	AF2841	SOIL	Х	Х	х	х
65TP02	AF2843	SOIL	Х	Х	Х	Х
65TP04	AF2845	SOIL	Х	Х	Х	X
65TP05	AF2847	SOIL	Х	Х	Х	Х
65TP06	AF2849	SOIL	Х	Х	Х	Х
65TP07	AF2851	SOIL	Х	Х	Х	Х
65MW01A01MD	AF2853MD	WATER	Х	Х	Х	Х
65MW01A01MS	AF2857MS	WATER	X	Х	Х	Х
65MW01A01D	AF2861	WATER	Х	Х	Х	Х
65MW01A01	AF2865	WATER	Х	Х	Х	X
65DW0101	AF2869	WATER	Х	Х	Х	Х
65MW01AF01MD	AF2873MD	WATER				Х
65MW01AF01MS	AF2874MS	WATER				Х
65MW01AFDD	AF2875	WATER				Х
65-MW01AF-01	AF2876	WATER				Х
Total Number of San	nples (Water/Soil)		5/6	5/6	5/6	9/6

SAMPLES AND FRACTIONS REVIEWED

MS - Matrix Spike

MD - Matrix Spike Duplicate/Matrix Duplicate

Individual fractions were reviewed as follows:

<u>Primary</u>

Secondary

VOA - Volatiles (CLP, OLM01.8)Dan HeilSV - Semivolatiles (CLP, OLM01.8)Dan HeilP/P - Pesticides/PCB's (CLP, OLM01.8)Jackie ClevelandTAL - Total Metals (CLP, ILM02.1)Paul Humburg

Gene Watson Gene Watson d Gene Watson Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW01; CASE # 3558

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, WS0517, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4632 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07 acetone carbon disulfide 2-butanone 4-methyl-2-pentanone 2-hexanone

 The continuing calibration, QS0522, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

VBLKAF4684 chloroethane 65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane and xylene. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

4. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	methylene chloride	CRQL
65DW0101 65MW01A01 65MW01A01MSD	acetone	CRQL
65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	2-butanone	CRQL
65TP04 65TP06	xylene	CRQL
65TP02 65TP06	1,2-dichloroethane	CRQL

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limit for MS/MSD, 65MW01A01. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
VBLKAF4632 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07	acetone carbon disulfide 2-butanone 4-methyl-2-pentanone 2-hexanone	+	J .	2
VBLKAF4684 65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	chloroethane	+ /-	J/UJ	3
65DW0101 65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	methylene chloride	+	CRQL	- 4
65DW0101 65MW01A01 65MW01A01MSD	acetone	+	CRQL	_ 4
65MW01A01 65MW01A01D 65MW01A01MS 65MW01A01MSD	2-butanone	+	CRQL	. 4
65TP04 65TP06	xylene	+	CRQL	- 4
65TP02 65TP06	1,2-dichloroethane	+	CRQL	. 4

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW01; CASE # 3558

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/22/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

hexachlorocyclopentadiene

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC05262, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF3171B 65MW01A01D 65MW01A01MS 65MW01A01MSDD 65MW01A01 SBLKAF3740B 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07 hexachlorocyclopentadiene 4,6-dinitro-2-methylphenol

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

3. The continuing calibration, BCC05262, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

 SBLKAF3171B
 2,4-dinitrophenol

 65MW01A01D
 65MW01A01MS

 65MW01A01MSDD
 65MW01A01

 SBLKAF3740B
 65TP01

 65TP02
 65TP04

 65TP05
 65TP06

 65TP07
 65TP07

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

4. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

All spike recoveries were not within advisory limits the MS/MSD 65MW01A01. The MS sample exhibited a high recovery for 4-nitrophenol. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
SBLKAF3171B 65MW01A01D 65MW01A01MS 65MW01A01MSDD 65MW01A01 SBLKAF3740B 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07	hexachlorocyclo- pentadiene 4,6-dinitro-2-methylpher	+ nol	IJ	2
SBLKAF3171B 65MW01A01D 65MW01A01MS 65MW01A01MSDD 65MW01A01 SBLKAF3740B 65TP01 65TP02 65TP04 65TP05 65TP06 65TP07	2,4-dinitrophenol	+ /-	J/UJ	3
All samples	"B" flagged TICs	+	R	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # 65DW01

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890L, 5/30/95, exhibited compounds with %RSDs greater than 20%. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

Methoxychlor

65TP01	65TP07
65TP02	65TP04DL
65TP04	65TP05DL
65TP05	65TP07DL
65TP06	65DW0101

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Two samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

650W0101 65MW01A01

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair of sample 65MW01A01 exhibited acceptable recoveries for all compounds. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65MW01A01 did not exhibit positive results for target compounds. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were required for some samples. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

3. For the following samples reject the Z flagged compounds and replace them with the D flagged compounds from the dilution analysis of the sample. For the DL samples reject all other compounds.

65TP04 65TP05 65TP07

- 4. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 5. Positive results exhibited column quantitation %Ds greater than 100% are gualified as presumptively present at an estimated concentration, NJ.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 4

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CROL** = The sample result for the blank contaminant is less than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CROL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>01</u>	SPECIFIC FINDINGS
65TP01 65TP07 65TP02 65TP04DL 65TP05 65TP05DL 65TP05 65TP07DL 65TP06 65DW0101	Methoxychlor	+/U	J/UJ	1
65 D W0101 65MW01A01	ALL	+ /U	J/UJ	2
65TP04 65TP05 65TP07	All Z flagged	+	R	3
All	All P >25% But ≤ 100%	+	ل.	4
All	All P >100%	+	NJ	5

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of five (5) field water samples and two Matrix Spike and Duplicate pairs and six (6) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) OA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

<u>LCS</u>

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SPECIFIC SAMPLE ID _____ ANALYTE _____ DL ____ FINDING

Data stands as reported without qualification.

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

JOB# 3565

SAMPLES AND FRACTIONS REVIEWED

Sample Iden	tifications		An	alytical	Fractio	ons
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/P</u>	<u>TAL</u>
65MW07A-01	AF3027	WATER	Х	х	х	Х
65DW02-01	AF3031	WATER	Х	Х	Х	Х
65MW05A-01	AF3044	WATER	Х	Х	Х	Х
65MW02A-01	AF3048	WATER	Х	Х	Х	Х
65MW03-01	AF3052	WATER	Х	Х	Х	Х
65MW06A-01	AF3056	WATER	Х	х	Х	Х
Total Number of S	amples (Water/Soil)		6/0	6/0	6/0	6/0

Individual fractions were reviewed as follows:

VOA - Volatiles (CLP, OLM01.8) SV - Semivolatiles (CLP, OLM01.8) P/P - Pesticides/PCB's (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1)

Primary

<u>Secondary</u>

Dan Heil	Gene Watson
Dan Heil	Gene Watson
Jackie Cleveland	Gene Watson
Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3565

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

 The continuing calibration, QS0522, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF4684 65MW06A01 65MW02A01 65MW05A01 65DW0201 65MW07A01 chloroethane

 The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, gualify all positive results as estimated (J).

VBLKAF4675 bromomethane 65MW0301

 The continuing calibration, QS0523, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF4675 65MW0301 chloroethane

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane, xylenes (total) and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	methylene chloride	CRQL
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	acetone	CRQL
65MW05A01 65MW06A01 65MW0301	2-butanone	CRQL

6. Reject all "B" flagged TICs due to method blank contamination.

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,2-dichloroethane and toluene. The rinseate blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

VOLATILE ANALYSIS

PAGE - 4

Trip Blanks (continued)

Specific findings:

7. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

1,2-dichloroethane

CRQL

65DW0201 65MW0301 65MW05A01 65MW06A01 65MW07A01

Rinseate Blanks

The rinseate blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone and 1,2-dichloroethane. However, the contamination was attributed to the associated method blank and trip blank. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CROL = The sample result for the blank contaminant is less than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CROL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF4684 65MW06A01 65MW02A01 65MW05A01 65DW0201 65MW07A01	chloroethane	+/-	J\UJ	2
VBLKAF4675 65MW0301	bromomethane	+	J	3
VBLKAF4675 65MW0301	chloroethane	+/-	J/UJ	4
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	methylene chloride	+	CRQI	- 5
65DW0201 65MW02A01 65MW05A01 65MW06A01 65MW07A01 65MW0301	acetone	+	CRQI	- 5
65MW05A01 65MW06A01 65MW0301	2-butanone	4	CRQI	- 5
All samples	"B" flagged TICs	+	R	6

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result

- in the DL column denotes a non detect result

SUMMARY OF DATA QUALIFICATIONS

Page - 2

SAMPLE ID

ANALYTE ID

DL QL SPECIFIC FINDINGS

65DW0201 65MW0301 65MW05A01 65MW06A01 65MW07A01 1,2-dichloroethane

CRQL 7

+

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3565

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No gualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and the average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0610, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW07A01	4-nitrophenol
65DW0201	di-n-octylphthalate
65MW05A01	

2. The continuing calibration, BCC0610, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW07A01 carbazole 65DW0201 65MW05A01

3. The continuing calibration, BCC0611, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65MW02A01	n-nitrosodi-n-propylamine	
65MW0301	2,4-dinitrophenol	
65MW06A01	4-nitrophenol	
	4-nitroaniline	
	di-n-octylphthalate	

4. The continuing calibration, BCC0611, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

65MW02A01 65MW0301 65MW06A01 carbazole

SEMIVOLATILE ANALYSIS

PAGE - 3

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No gualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for bis{2ethylhexyl)phthalate, di-n-butylphthalate, butylbenzylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

5. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0201 65MW0301 65MW07A01	bis(2-ethylhexyl) phthalate	CRQL
65DW0201 65MW0301 65MW07A01	di-n-butylphthalate	CRQL

6. Reject all results for the "B" flagged TICs due to method blank contamination.

Rinseate Blanks

The rinseate blanks that were analyzed exhibited contamination for dibutylphthalate, butylbenzylphthalate and bis(2-ethylhexyl)phthalate. However, the contaminations was attributed to the associated method blanks. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- \mathbf{R} = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U =
- The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	OL	SPECIFIC FINDINGS
65MW07A01 65DW0201 65MW05A01	4-nitrophenol di-n-octylphthalate	+	J	1
65MW07A01 65DW0201 65MW05A01	carbazole	+/-	J/UJ	2
65MW02A01 65MW0301 65MW06A01	n-nitrosodi-n- propylamine 2,4-dinitrophenol 4-nitrophenol 4-nitroaniline di-n-octylphthalate	+	J	3
65MW02A01 65MW0301 65MW06A01	carbazole	+/-	J/UJ	4
65DW0201 65MW0301 65MW07A01	bis(2-ethylhexyl) phthalate	+	CRQL	. 5
65DW0201 65MW0301 65MW07A01	di-n-butylphthalate	+ .	CRQL	. 5
All samples	"B" flagged TICs	+	R	6

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0201

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

1. The initial calibration on instrument 5890K, 5/23/95, exhibited compounds with %RSDs greater than 20%. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

δ-BHC Methoxychlor

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standard associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

There were no QC blanks in this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Three (3) field samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65DW0201 65MW02A01 65MW06A01

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Matrix Spike/Matrix Spike Duplicate

There was no MS/MSD pair in this SDG. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

There was no field duplicate pair in this SDG.

Analyte Identification/Quantitation

No positive results were reported in the samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

 $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$

- J = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CROL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	OL	SPECIFIC FINDINGS
All Samples	δ-BHC Methoxychlor	+/U	J/UJ	1
65DW0201 65MW02A01 65MW06A01	ALL	+ /U	J\NJ	2

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of six (6) field water samples and no Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section. The Calcium contamination had not impact on the data.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

. . . .

<u>LCS</u>

......

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

. . . .

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	QL	SPECIFIC FINDING	
Data stands as reported witho	out qualification.				

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

023

.

JOB# 3631

SAMPLES AND FRACTIONS REVIEWED

Sample Ident	ifications		Analytical Fractions			ons
BAKER ID	QUANT ID	<u>Matrix</u>	<u>V0A</u>	<u>sv</u>	<u>P/P</u>	TAL
65SW04-01	AF3866	WATER	х	х	х	X
65SW04-01D	AF3869	WATER	Х	X	Х	Х
65SW04-01MS	AF3872	WATER	Х	х	х	х
65SW04-01MD	AF3875	WATER	Х	X	Х	X
65TB-03	AF3878	WATER	X			
Total Number of Sa	mples (Water/Soil)		5/0	4/0	4/0	4/0

Individual fractions were reviewed as follows:

VOA - Volatiles (CLP, OLM01.8)
SV - Semivolatiles (CLP, OLM01.8)
P/P - Pesticides/PCB's (CLP, OLM01.8)
TAL - Total Metals (CLP, ILM02.1)

Primary

Secondary

Dan HeilGene WatsonDan HeilGene WatsonJackie ClevelandGene WatsonPaul HumburgJackie Cleveland

VOLATILE ORGANICS

General _

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SW04; CASE # 3631

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03 bromomethane

 The continuing calibration, QS0523, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

chloroethane

VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 1,1,2,2-tetrachloroethane, xylenes (total) and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

4. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65TB03	methylene chloride	CRQL
65SW0401	acetone	CRQL
65SW0401D		
65SW0401MS 65SW0401MSD		
65TB03		

Trip Blanks

The trip blank that was analyzed exhibited contamination for methylene chloride, acetone, 1,1-dichloroethene, 1,2-dichloroethane, trichloroethene and toluene. The trip blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SW0401	1,2-dichloroethane	CRQL
65SW0401D		
65SW0401MS		
65SW0401MSD		

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limits for MS/MSD 65SW0401. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	bromomethane	+	.J <u>.</u>	2
VBLKAF4675 65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	chloroethane	+/-	J/UJ	3
65TB03	methylene chloride	+	CRQL	. 4
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD 65TB03	acetone	+	CRQL	. 4
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	1,2-dichloroethane	+	CRQL	5

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

SEMIVOLATILE ORGANICS

General _

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA, Method 625 modified; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SW04; CASE # 3631

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC0609, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF4006B 65SW0401 n-nitrosodi-n-propylamine 2,4-dinitrophenol 4-nitrophenol di-n-octylphthalate benzo(k)fluoranthene

 The continuing calibration, BCC0609, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

SBLKAF4006B carbazole 65SW0401

3. The continuing calibration, BCC0610, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

65SW0401D	4-nitrophenol
65SW0401MS	carbazole
65SW0401MSD	di-octylphthalate

Internal Standards

All of the internal standard EICP areas, that were submitted with this package, met the internal standard EICP area QA/QC criteria. However, the laboratory did not submit internal standard areas for the samples that were analyzed following an initial calibration. In a phone conversation with Baker Environmental, the data reviewer was informed that the internal standard area forms for the above mention samples would not be re-submitted. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Method Blanks

The method blanks that were analyzed exhibited contamination for phenol. However, the positive results found in associated samples exceeded 5x the method blank concentration. No qualifications are required.

Rinseate Blanks

The rinseate blanks that were analyzed did not exhibit contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike and RPD recoveries were within advisory limits for MS/MSD 65SW0401. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

011

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

U = Not detected

- **J** = Estimated value
- UJ = Reported Quantitation limit is qualified as estimated
- \mathbf{R} = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CROL** = The sample result for the blank contaminant is less than the sample CROL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CROL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
SBLKAF4006B	n-nitrosodi-n- propylamine	+	·J -	1
65SW0401	2,4-dinitrophenol 4-nitrophenol 4-nitroaniline di-n-octylphthalate benzo(k)fluoranthene			. - .
SBLKAF4006B 65SW0401	carbazole	+/-	J/UJ	2
65SW0401D 65SW0401MS 65SW0401MSD	4-nitrophenol carbazole di-octylphthalate	+	J	3

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SW0401

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Initial Calibrations, continued

Specific Findings

 The initial calibration on instrument 5890K, 5/23/95-5/27/95, exhibited a %RSD greater than 20% for delta-BHC. The initial calibration on instrument 5890L, 5/23/95-5/27/95, exhibited a %RSD greater than 20% for Methoxychlor. All positive and non-detect results in the following samples for the non-compliant compounds noted below associated with the ICAL are qualified as estimated, J/UJ.

All Samples

delta-BHC Methoxychior

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

<u>OC Blanks</u>

QC blanks were not included in this data package.

Florisil/GPC Checks

The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. The GPC clean-up check standard was not required as the data package included only water samples. Raw data was not required in the Level C data package.

ł.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Surrogate Recoveries

Several samples exhibited non-compliant DCB recoveries.

Specific Finding

2. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65SW0401 65SW0401D 65SW0401MS 65SW0401MSD

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair exhibited acceptable recoveries for all spiked compounds. The LCS sample exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65SW0401 did not exhibit positive results of target compounds. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in the MS/MSD pair and LCS sample. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were not required.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

 \mathbf{U} = Not detected

- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- \mathbf{K} = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	QL	SPECIFIC FINDINGS
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	delta-BHC Methoxychlor	+/U	J/UJ	1 '
65SW0401 65SW0401D 65SW0401MS 65SW0401MSD	ALL	+/U	J\NJ	2

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result

- in the DL column denotes a non detect result

018

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results.(Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of two (2) field water samples and one Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section. The Calcium contamination had not impact on the data.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

1. The Duplicate analysis for Manganese was outside the control limits. All positive results are qualified as estimated, "J".

Metals Data Assessment Narrative (continued - Page 2)

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All water samples	Mn.	+	J	1

DL - denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values

QL - denotes data validation qualifier

021

ţ

JOB# 3651 and 3653

SAMPLES AND FRACTIONS REVIEWED

Sample Iden	tifications		<u> </u>	lytical	<u>Fractio</u>	ns
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/A</u>	<u>TAL</u>
65DW0401	AF4024	WATER	х	Х	X	х
65MW04A01	AF4023	WATER	Х	Х	Х	Х
65RB23	AF4066	WATER	Х	Х	Х	Х
65SW0501	AF4061	WATER	Х	Х	Х	Х
65SD0406	AF4033	SOIL	Х	Х	Х	Х
65SD0406MS	AF4033	SOIL	Х	Х	Х	Х
65SD0406MSD	AF4033	SOIL	Х	Х	Х	Х
65SD0406D	AF4040	SOIL	Х	Х	Х	Х
65SD04612	AF4028	SOIL	Х	Х	Х	Х
Total Number of Sa	mples (Water/Soil)		4/5	4/5	4/5	4/5

Individual fractions were reviewed as follows:

	<u>Primary</u>	Secondary
 VOA - Volatiles (CLP, OLMo1.8) SV - Semivolatiles (CLP, OLM01.8) P/A - Pesticide/PCBs (CLP, OLM01.8) TAL - Total Metals (CLP, ILM02.1) 	Dan Heil Dan Heil Jackie Cleveland Paul Humburg	Gene Watson Gene Watson Gene Watson Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04; CASE # 3651

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0523, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF4675 65MW04A01 65DW0401 65SW0501 65RB23 bromomethane

3. The continuing calibration, WS0530, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5330 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE chloromethane acetone

003

VOLATILE ANALYSIS

PAGE -3

Continuing calibrations (continued)

Specific Finding:

 The continuing calibration, WS0530, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF5330 carbon disulfide 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE

Internal Standards

All internal standard EICP areas did not meet the internal standard EICP area QA/QC criteria.

Specific Finding:

5. The samples listed below exhibited low internal standard areas. Qualify all positive results associated with the non compliant internal standard areas as estimated (J) and all non detected results as estimated (UJ).

65SD0406 65SD04612 65SD0406MSD	chlorobenzene-d $_{5}$	
65SD04612RE	1,4-difluorobenzene	

chlorobenzene-d₅

VOLATILE ANALYSIS

PAGE - 4

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, 2-butanone, 2-hexanone, 4-methyl-2-pentanone, 1,1,2,2-tetrachloroethane, xylenes and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65RB23 65SD0406 65SD0406D 65SD04612 65SD04612RE 65SD0406MS 65SD0406MSD	methylene chloride	CRQL
65SD0406 65SD0406D 65SD04612 65SD04612RE 65DW04A01	acetone	U
65DW0401 65SW0501	acetone	CRQL
65RB23	2-butanone	CRQL

Trip Blanks

The associated trip blank was not identified for this SDG No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Rinseate Blanks

The rinseate blank that was analyzed exhibited contamination for methylene chloride, acetone, 2-butanone and 1,2-dichloroethane. The rinseate blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

7. The following samples have been qualified for blank contamination. The qualifications are for all the blanks.

65SD0406MS 65SD0406MSD	acetone	U
65SD0406MS 65DW0401 65DW04A01 65SW0501	1,2-dichloroethane	CRQL

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits.

Specific Finding:

8. Samples 65SD0406 and 65sd0406MS, exhibited high surrogate recoveries for toluene-d₈ and 1,2-dichloroethane-d₄. Qualify all positive results as estimated (J).

VOLATILE ANALYSIS

PAGE - 6

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were not within advisory limits for MS/MSD 65SD0406. The MS/MSD samples exhibited high spike and RPD recoveries for benzene and toluene. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

9. Reject all results for sample 65SD04612RE, in favor of the original sample analysis due to non compliant internal standard areas.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is gualified.

007

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U =
- The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

-0.03

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
VBLKAF4675 65MW04A01 65DW0401 65SW0501 65RB23	bromomethane	+	J	2
VBLKAF5330 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE	chloromethane acetone	+	J	3
VBLKAF5330 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD 65SD04612RE	carbon disulfide	+/-	J\A	4
65SD0406 65SD04612 65SD0406MSD	All associated analytes chlorobenzene-d ₅	+/-	J/UJ	5
65SD04612RE	1,4-difluorobenzene chlorobenzene-d₅			

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

003

SUMMARY OF DATA QUALIFICATIONS

Page - 2

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
]65RB23 65SD0406 65SD0406D 65SD04612 65SD04612RE 65SD0406MS 65SD0406MSD	methylene chloride	+	CRQ	L 6
65SD0406 65SD0406D 65SD04612 65SD04612RE 65DW04A01	acetone	+	U	6
65DW0401 65SW0501	acetone	+	CRQ	L 6
65RB23	2-butanone	+	CRQ	L 6
65SD0406MS 65SD0406M:SD	acetone	+	U	7
65SD0406MS 65DW0401 65DW04A01 65SW0501	1,2-dichloroethane	+	CRQ	L 7
65SD0406 65SD0406MS	All analytes	+	J	8
65SD04612RE	All analytes	+/-	R	9

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

010

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW04; CASE # 3653

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No gualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/22/95, contained compounds with %RSDs greater than 30%. No qualifications are required, because no samples were analyzed following the calibration.

hexachlorocyclopentadiene

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

Specific Findings:

2. The continuing calibration, BCC0531, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

4-methylphenol 4,6-dinitro-2-methylphenol carbazole 3,3'-dichlorobenzidine

3. The continuing calibration, BCC0531, contained compounds with RRFs less than 0.05. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J) and reject all non detects (R).

SBLKAF4450 65MW04A01 65DW0401 65SW0501 65RB23 hexachlorocyclopentadiene 2,4-dinitrophenol

4. The continuing calibration, BCC06052, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF5197B 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD

hexachlorocyclopentadiene 2,4-dinitrophenol

013

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

5. The continuing calibration, BCC06052, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

 SBLKAF5197B
 carbazole

 65SI)04612
 65SD0406

 65SD0406D
 65SD0406MS

 65SD0406MS
 65SD0406MSD

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for bis(2ethylhexyl)phthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

6. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0401	bis(2-ethylhexyl)	CRQL
	phthalate	

7. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The rinseate blank that was analyzed did not exhibit contamination. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike recoveries were within advisory limits the MS/MSD 65SD0406. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- **J** = Estimated value
- UJ = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CROL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
SBLKAF4450 65MW04A01 65DW0401 65SW0501 65RB23	4-methylphenol 4,6-dinitro-2-methylpher carbazole 3,3'-dichlorobenzidine	+ nol	J	2
SBLKAF4450 65MW04A01 65DW0401 65SW0501 65RB23	hexachlorocyclo- pentadiene 2,4-dinitrophenol	+/-	J/R	3
SBLKAF5197B 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD	hexachlorocyclo- pentadiene 2,4-dinitrophenol	+	IJ	4
SBLKAF5197B 65SD04612 65SD0406 65SD0406D 65SD0406MS 65SD0406MSD	carbazole	+/-	1\N1	5
65DW0401	bis(2-ethylhexyl) phthalate	+	CRQI	- 6
All samples	"B" flagged TICs	+	R	7

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

016

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0401

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890L, 5/30/95, exhibited a %RSD greater than 20% for Methoxychlor. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65MW04A01	65RB23	Methoxychlor
65DW0401	•	
65SW0501		

PAGE - 2

Specific Findings, continued

2. The initial calibration on instrument 5890K, 6/12/95, exhibited a %RSD greater than 20% for 4,4'-DDD. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65SD04612 65SD0406 65SD0406D 4,4'-DDD

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blanks did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

The associated rinseate blank did not exhibit contamination for target compounds.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

PAGE - 3

Surrogate Recoveries

Two samples exhibited non-compliant DCB recoveries and one method blank exhibited non-compliant TCX recoveries.

Specific Finding

3. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

65DW0401 65SW0501

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair exhibited acceptable recoveries for spiked compounds. The LCS samples exhibited acceptable recoveries for spiked compounds. No qualifications were required.

Field Duplicates

The field duplicate pair of sample 65SD0406 exhibited non-compliant RPDs for 4,4'-DDE and 4,4'-DDD.

Specific Finding

4. All positive results for the following samples are qualified as estimated, J, due to poor duplicate precision, for the non-compliant compounds noted below.

65SD0406	4,4'-DDE
65SD0406D	4,4'-DDD

PAGE - 4

Analyte Identification/Quantitation

Positive results were reported in several samples. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

- 5. Positive results exhibited column quantitation %Ds greater than 25% but less than or equal to 100% are qualified as estimated, J.
- 6. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- $\mathbf{U} = \mathbf{Not} \, \mathbf{detected}$
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- \mathbf{R} = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>OL</u>	SPECIFIC FINDINGS
65MW04A01 65DW0401 65SW0501 65RB23	Methoxychlor	+ /U	J/UJ	1
65SD04612 65SD0406 65SD0406D	4,4'-DDD	+/U	J/UJ	2
65DW0401 65SW0501	All	+/U	J/UJ	3
65SD0406 65SD0406D	4,4'-DDE 4,4'-DDD	÷	J	4
All	All P >25% But ≤ 100%	÷	J	5
AII	All P >100%	+	NJ	6

- DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 in the DL column denotes a point detect result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of three (3) field soil samples and one Matrix Spike and Duplicate pair and four (4) field water samples for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

PBW			PBS		
Calcium	44.1	ug/l	Iron	3.17	mg/kg
Iron	18.5	ug/l			
Zinc	5.36	ug/l			

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

Interfere: ces

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

Spike Recovery

- The Matrix Spike recovery for soils for Antimony was below the lower control limits. All positive and non-detect results are qualified as estimated, "J" or "UJ".
- 3. The Matrix Spike recovery for soils for Lead was above the upper control limits. All positive results are qualified as estimated, "J".

Duplicate

4. The Duplicate analyses for soils for Aluminum, Chromium, Copper, Lead, Manganese and Zinc were outside the control limits. All positive results are gualified as estimated, "J".

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All water samples	Ca, Fe and Zn.	+	U	1
All soil samples	Fe.			
All soil samples	Sb.	+/U	J/UJ	2
All soil samples	Pb.	+	J	3
All soil samples	Al, Cr, Cu, Fe, Pb, Mn and Zn.	+	J	4

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

، ب JOB# 3666

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications			Fractions			
BAKER ID	QUANT ID	<u>Matrix</u>	VOA	<u>sv</u>	<u>P/A</u>	<u>TAL</u>
65SD0506 65SD05612	AF4240 AF4233	SOIL SOIL	X X	X X	X X	x x
Total Number of S	amples (Water/Soil)		0/2	0/2	0/2	0/2

Individual fractions were reviewed as follows:

.

	Primary	<u>Secondary</u>
VOA - Volatiles (CLP, OLMo1.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/A - Pesticide/PCBs (CLP, OLMO1.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65sd05; CASE # 3666

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations (continued)

Specific Finding:

1. The continuing calibration, WS0530, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5330	chloromethane
65SD0506	acetone

2. The continuing calibration, WS0530, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF5330 65SD0506 carbon disulfide

3. The continuing calibration, WS0531, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, gualify all positive results as estimated (J).

VBLKAF6082 65SD0506RE 65SD05612 vinyl chloride cis-1,3-dichloropropene

4. The continuing calibration, WS0531, contained compounds with %Ds greater than 50%, but less than 90%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J) and all non detects as estimated (UJ).

VBLKAF6082 65SD0506RE 65SD05612 acetone carbon disulfide

VOLATILE ANALYSIS

PAGE -3

Internal Standards

All internal standard EICP areas did not meet the internal standard EICP area QA/QC criteria.

Specific Finding:

5. The samples listed below exhibited low internal standard areas. Qualify all positive results associated with the non compliant internal standard areas as estimated (J) and all non detected results as estimated (UJ).

65SD0506 chlorobenzene-d₅

65SD0506RE

bromochloromethane 1,4-difluorobenzene chlorobenzene- d_5

Method Blanks

The method blanks that were analyzed exhibited contamination for chloromethane methylene chloride, acetone and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

6. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

65SD0506	methylene chloride	U
65SD05612	methylene chloride	CRQL

Trip Blanks

The associated trip blank was not identified for this SDG No qualifications are required.

1004

VOLATILE ANALYSIS

PAGE - 4

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits.

Specific Finding:

- 7. Sample 65SD0506, exhibited high surrogate recoveries for toluene- d_8 and 1,2dichloroethane- d_4 . Qualify all positive results as estimated (J).
- 8. Sample 65SD0506RE, exhibited high surrogate recoveries for BFB and low recoveries for toluene- d_8 and 1,2-dichloroethane- d_4 . Qualify all positive results as estimated (J) and all non detects as estimated (UJ).

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

Specific Finding:

9. reject all results for sample 65SD0506RE, in favor of the original sample analysis due to non compliant surrogate recoveries and internal standard areas.

VOLATILE ANALYSIS

PAGE - 5

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

006

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u> 0L</u>	SPECIFIC FINDINGS
VBLKAF5330 65SD0506	chloromethane acetone	+	J	1
VBLKAF5330 65SD0506	carbon disulfide	+/-	J/UJ	2
VBLKAF6082 65SD0506RE 65SD05612	vinyl chloride cis-1,3-dichloropropene	+	J	3
VBLKAF6082 65SD0506RE 65SD05612	acetone carbon disulfide	+/-	J/UJ	4
65SD0506	All associated analytes chlorobenzene-d ₅	+/-	J/UJ	5
65SD0506RE	bromochloromethane 1,4-difluorobenzene chlorobenzene-d₅		,	
65SD0506	methylene chloride	+	U	6
65SD05612	methylene chloride	+	CRQL	. 6
65SD0506	All analytes	+	J	7
65SD0506RE	All analytes	+/-	J/UJ	8
65SD0506RE	All analytes	+/-	R	9

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

×

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65SD05; CASE # 3666

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, BCC06052, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLKAF5197B	hexachlorocyclopentadiene
65SD05612	2,4-dinitrophenol
65SD0506	

 The continuing calibration, BCC06052, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

SBLKAF5197B carbazole 65SD05612 65SD0506

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blank that was analyzed exhibited contamination for TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

3. Reject all results for the "B" flagged TICs due to method blank contamination.

SEMIVOLATILE ANALYSIS

PAGE - 3

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- **UJ** = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL	<u>QL</u>	SPECIFIC FINDINGS
SBLKAF5197B	hexachlorocyclo- pentadiene	+	J	1
65SD05612 65SD0506	2,4-dinitrophenol			•
SBLKAF5197B 65SD05612 65SD0506	carbazole	+/-	J/UJ	2
All samples	"B" flagged TICs	+	R	3

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

r

.

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # SD0506

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No gualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration on instrument 5890K, 6/12/95, exhibited a %RSD greater than 20% for 4,4'-DDD. All positive and non-detect results in the following samples are qualified as estimated, J/UJ, for the non-compliant compounds noted below.

65SD0506 65SD05612 4,4'-DDD

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

QC Blanks were not included with this SDG.

Florisil/GPC Checks

The GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

All samples exhibited compliant TCX and DCB recoveries. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

A MS/MSD pair was not included with this SGD.

Field Duplicates

A field duplicate pair was not included with this SGD.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Analyte Identification/Quantitation

Positive results were reported in one sample. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Some reported positive results exhibited column quantitation %Ds greater than 25%.

Specific Findings

2. Positive results exhibited column quantitation %Ds greater than 100% are qualified as presumptively present at an estimated concentration, NJ.

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

016

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- \mathbf{U} = Not detected
- **J** = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- **K** = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID	ANALYTE ID	DL	<u>OL</u>	SPECIFIC FINDINGS
65SD0506 65SD05612	4,4'-DDD	+/U	J/UJ	1
All	All P >100%	+	NJ	2

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of two (2) field soil samples and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

Calcium	11.4	mg/kg
Zinc	1.29	mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

<u>Interferences</u>

No significant interferences were observed.

Metals Data Assessment Narrative (continued - Page 2)

020

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

LCS

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All soil samples	Ca and Zn.	+	U	1

- DL denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values
- QL denotes data validation qualifier

021

۰. ا JOB# 3681

SAMPLES AND FRACTIONS REVIEWED

Sample Identifications		Analytical Fractions				
BAKER ID	QUANT ID	<u>Matrix</u>	<u>VOA</u>	<u>sv</u>	<u>P/A</u>	<u>TAL</u>
65DW0201	AF4532	WATER	х	x	Х	Х
Total Number of San	nples (Water/Soil)		1/0	1/0	1/0	1/0

Individual fractions were reviewed as follows:

	Primary	Secondary
VOA - Volatiles (CLP, OLMo1.8)	Dan Heil	Gene Watson
SV - Semivolatiles (CLP, OLM01.8)	Dan Heil	Gene Watson
P/A - Pesticide/PCBs (CLP, OLMO1.8)	Jackie Cleveland	Gene Watson
TAL - Total Metals (CLP, ILM02.1)	Paul Humburg	Jackie Cleveland

n •

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3681

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 05/05/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

chloroethane

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, QS0531, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLKAF5431 styrene 65DW0201

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, xylene and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

3. The following samples have been qualified for method blank contamination. The gualifications are for all the method blanks.

65DW0201 methylene chloride CRQL

4. Reject all "B" flagged TICs due to method blank contamination.

VOLATILE ANALYSIS

PAGE - 3

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were within QA/QC limits. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

0 004

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank gualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

005

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u>QL</u>	SPECIFIC FINDINGS
VBLKAF5431 65DW0201	styrene	+	J	2
65DW0201	methylene chloride	+	CRQL	. 3
65DW0201	"B" flagged TICs	+	R	4

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level E. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # 65DW02; CASE # 3681

Holding Times

All extraction and analysis holding times for all samples were met for all samples per the SOW and National Functional Guidelines. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibration that was analyzed all of the criteria and non criteria compounds met requirements for RRFs and %Ds. No qualifications are required.

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 2

Method Blanks

The method blank that was analyzed exhibited contamination for bis(2ethylhexyl)phthalate. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

1. The samples listed below have been qualified for method blank contamination. The qualification are for all method blanks.

65DW0201	bis(2-ethylhexyl)	CRQL
	phthalate	

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks met QA/QC criteria. No qualifications are required.

Matrix Spike

The associated MS/MSD was not identified for this SDG. No qualifications are required.

Field Duplicates

No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 3

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

9

009

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID

ANALYTE ID

QL SPECIFIC FINDINGS

65DW0201

bis(2-ethylhexyl) phthalate CRQL 1

DL

+

DL denotes the Form I qualifier supplied by the laboratory OL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

£

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # DW0201

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information in the data package and the chain of custody records. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were acceptable for the linearity of all compounds. Raw data was not required in this Level C data package. No qualifications are required.

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits. Raw data was not required in this Level C data package. No qualifications are required.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Method Blanks

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

The instrument blanks were free of target compound contamination.

OC Blanks

QC Blanks were not included with this SDG.

Florisil/GPC Checks

The Florisil cartridge check exhibited acceptable spike recoveries for all compounds. A GPC clean-up check standard was not required as only water samples were included in this data package. Raw data was not required in the Level C data package.

Surrogate Recoveries

All samples exhibited compliant TCX and DCB recoveries. No qualifications are required.

Matrix Spike/Matrix Spike Duplicate

A MS/MSD pair was not included with this SGD.

Field Duplicates

A field duplicate pair was not included with this SGD.

Analyte Identification/Quantitation

No positive results were reported. Identification and quantitation appear reasonable based on sample and standard review. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package.

0**13**

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

Overall Assessment

The overall quality of the data package is good. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

014

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- \mathbf{U} = Not detected
- J = Estimated value
- **UJ** = Reported quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
 - No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SAMPLE ID ANALYTE ID DL QL SPECIFIC FINDINGS

016

NO QUALIFICATIONS ARE REQUIRED.

DL denotes the Form I qualifier supplied by the laboratory
 QL denotes the qualifier used by the data validation firm
 + in the DL column denotes a positive result
 - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from Lejuene, SDG# N/A, the analysis of one (1) field water sample and no Matrix Spike and Duplicate pair for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

<u>Specific</u> QA/QC deficiency <u>Findings</u> are listed numerically in the following categories:

Holding Times

The holding times were met as specified in Section 3 of the NEESA (20.2-047B) QA protocol.

Calibration

No deficiencies in this section.

Preparation and Field Blank

No deficiencies in this section.

Interferences

No significant interferences were observed.

Spike Recovery

No deficiencies in this section.

Duplicate

No deficiencies in this section.

Metals Data Assessment Narrative (continued - Page 2)

<u>LCS</u>

No deficiencies in this section.

Serial Dilution

No deficiencies in this section.

SAMPLE ID ANALYTE DL OL FINDING

SPECIFIC

Data stands as reported without qualification.

- DL denotes laboratory qualifier/reported value + denotes positive values U denotes non-detect values
- QL denotes data validation qualifier

019

SDG# AC01F (Case # 82295)

Sample Identifications Analytical Fractions **BAKER ID** QUANT ID <u>Matrix</u> VOA SV P/PM&C 73-FS01-BC01F 082295-0001 TISSUE Х Х Х Х 73-FS01-BC01FDUP 082295-0001DUP TISSUE Х Х Х Х 73-FS01-BC02F 082295-0002 TISSUE Х Х Х Х 73-FS01-BF01F 082295-0003 TISSUE Х Х Х Х 73-FS01-PF01F 082295-0004 Х Х TISSUE Х Х 73-FS01-SF01W 082295-0005 Х Х TISSUE Х Х 73-FS01-SF01F 082295-0006 TISSUE Х Х Х Х 73-FS02-BC01F 082295-0007 TISSUE Х Х Х Х 73-FS02-BC02F 082295-0008 TISSUE Х Х Х Х 73-FS02-YM01W 082295-0009 Х TISSUE Х Х Х 73-FS02-SF01W 082295-0010 -Х TISSUE Х Х Х 73-FS02-SF01WMS 082295-0010MS TISSUE Х Х Х Х 73-FS02-SF01WMD 082295-0010MD TISSUE Х Х Х Х 73-FS02-SF01WDUP 082295-0010DUP TISSUE Х Х Х Х 73-FS02-SF01F 082295-0011 TISSUE Х Х Х Х 73-FS02-SS01F 082295-0012 TISSUE Х Х Х Х 73-FS02-SPM01F 082295-0013 TISSUE Х Х Х Х 73-FS02-PF01W 082295-0014 Х Х TISSUE Х Х 73-FS03-BC01F 082295-0015 Х TISSUE Х Х Х 73-FS03-BC02F 082295-0016 Х Х TISSUE Х Х 73-FS03-AC01F 082295-0017 TISSUE Х Х Х Х 73-FS03-SF01F 082295-0018 Х Х TISSUE Х Х 73-FS03-SM01F 082295-0019 TISSUE Х Х Х Х 73-FS03-YM01W 082295-0020 Х Х TISSUE Х Х 65-FS04-BG01W 082295-0021 Х Х Х Х TISSUE 65-FS04-BG01WMS 082295-0021MS TISSUE Х Х Х 65-FS04-BG01WMD 082295-0021MD TISSUE Х Х Х 65-FS04-BG01WDUP 082295-0021DUP Х TISSUE Х Х 65-FS04-BG01F 082295-0022 TISSUE Х Х Х Х 65-FS04-RS01W 082295-0023 TISSUE Х Х Х Х 65-FS05-LB01W 082295-0024 Х TISSUE Х Х Х 65-FS05-LB01F 082295-0025 Х Х TISSUE Х Х 65-FS05-RS01W 082295-0026 TISSUE Х Х Х Х 65-FS05-RS01F 082295-0027 Х Х Х TISSUE Х 65-FS05-BG01W 082295-0028 Х Х TISSUE Х Х 65-FS05-BG01F 082295-0029 TISSUE Х Х Х Х

SAMPLES AND FRACTIONS REVIEWED

Total Number of Samples (Soil/Tissue)

0/36 0/34

0/36 0/35

VOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # AC01F; CASE # 82295

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW (fourteen (14) days from collection date). However, there is no established holding time for tissue samples, and the data reviewer is assuming that the samples remained frozen until analysis. No qualifications are required.

Tuning

All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No gualifications are required.

Initial Calibrations

The initial calibrations that were analyzed by the laboratory for these samples were not acceptable for all compound %RSDs and the average RRFs for all of the criteria compounds did not meet the initial calibration criteria.

Specific Finding:

1. The initial calibration analyzed on, 06/21/95, contained compounds with %RSDs greater than 30%. No qualifications are required because, no samples were analyzed following the calibration.

VOLATILE ANALYSIS

PAGE - 2

Continuing calibrations

The continuing calibrations that were analyzed with this data package exhibited %Ds that were not within %D continuing calibration criteria. All RRFs were within calibration criteria.

Specific Finding:

2. The continuing calibration, V2872, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLK20 3BC01F 3BC02F 3AC01F 3SF01F 4RS01W 5LB01W 5LB01F 5BG01W 5BG01F acetone

З.

The continuing calibration, V4380, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLK49 1BF01F 2BC01F 2BC02F 2YM01W 2SF01W 2SF01WDUP 2SF01WMS 2SF01WMSD 2SF01WMSD 2SPM01F 2PF01W

bromomethane chloroethane 1,1-dichloroethene

VOLATILE ANALYSIS

PAGE - 3

Continuing calibrations (continued)

Specific Finding:

4. The continuing calibration, V4381, contained compounds with %Ds greater than 25%, but less than 50%. For the samples and non-compliant compounds listed below, qualify all positive results as estimated (J).

VBLK51	chloromethane
2SS01F	acetone
5RS01F	2-butanone

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No gualifications are required.

Method Blanks

The method blanks that were analyzed exhibited contamination for methylene chloride, acetone, chlorobenzene and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

3SM01F	methylene chloride	CRQL	
4BG01W			
4BG01WDUP			
4BG01WMS			. •
1BF01F			• .
2BC01F			
2BC02F			
2SF01W	-	•	· · .
2SF01WDUP			
2SPM01F			

VOLATILE ANALYSIS

PAGE - 4

Method Blanks (continued)

Specific findings:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

2YM01Wmethylene chlorideCRQL2SF01WMSD2SS01FCRQL

6. Reject all "B" flagged TICs due to method blank contamination.

Trip Blanks

The associated trip blank was not identified for this SDG. No qualifications are required.

Rinseate Blanks

The associated rinseate blank was not identified for this SDG. No qualifications are required.

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

All of the surrogate recoveries for the all blanks and samples were not within QA/QC limits. Several samples exhibited surrogates that were diluted out. No qualifications are required.

VOLATILE ANALYSIS

PAGE - 5

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All spike and RPD recoveries were within advisory limit for MS/MSD 2SF01W and MS/MSD 4BGw01W. No qualifications are required.

Field Duplicate

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

The overall system performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates that less than 5% of the data is qualified.

GLOSSARY OF DATA QUALIFIERS

OUALIFICATION CODES

- U = Not detected
- J = Estimated value
- UJ = Reported quantitation limit is qualified as estimated
- R = Result is rejected and unusable
- NJ = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the gualification of the data.

SAMPLE ID	ANALYTE ID	<u>DL</u>	<u> 0L</u>	SPECIFIC FINDINGS
VBLK20 3BC01F 3BC02F 3AC01F 3SF01F 4RS01W 5LB01W 5LB01F 5BG01W 5BG01F	acetone	+	J	2
VBLK49 1BF01F 2BC01F 2BC02F 2YM01W 2SF01W 2SF01WDUP 2SF01WMS 2SF01WMSD 2SF01WMSD 2SPM01F 2PF01W	bromomethane chloroethane 1,1-dichloroethene	+	J	3
VBLK51 2SS01F 5RS01F	chloromethane acetone 2-butanone	+	J	4
3SM01F 4BG01W 4BG01WDUP 4BG01WMS 1BF01F 2BC01F 2BC02F 2SF01W	methylene chloride	+	CRQL	- 5
* DL denotes the F	orm I qualifier supplied by	the la	borator	У

QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

Page - 2

SAMPLE ID	ANALYTE ID	DL	<u>OL SPEC</u>	IFIC FINDINGS
2YM01W 2SF01WMS 2SF01WMSD 2SS01F 2SF01WDUP 2SPM01F	methylene chloride	+	CRQL	5
All samples	"B" flagged TICs	+	R	6

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

SEMIVOLATILE ORGANICS

General

The organic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, blank analysis results, surrogate and matrix spike recoveries, GC/MS performance, tuning results, calibration results and internal standard areas. This report was prepared in compliance relative to the analytical and deliverable requirements specified in the U.S. EPA CLP, 3/90 SOW; to the National Functional Guidelines for Organic Data Review, and NEESA Level C. All comments made within this report should be considered when examining the analytical results (Form I's).

SDG # AC01F; CA3E # 82295

Holding Times

The holding times for all of the samples were not met per the Organic Functional Guidelines and the CLP SOW. However, there is no established holding time for tissue samples, and the data reviewer is assuming that the samples remained frozen until extraction. No qualifications are required.

Tuning

All of the DFTPP tunes in the initial and continuing calibrations met the percent relative abundance criteria of the SOW and the Organic Functional Guidelines. No qualifications are required.

Initial Calibrations

The initial calibration that was analyzed by the laboratory for these samples was acceptable for all compound %RSDs and average RRFs. No qualifications are required.

Continuing Calibrations

The continuing calibrations that were analyzed all of the criteria and non criteria compounds met requirements for RRFs. Qualifications are required for compounds with non compliant %Ds.

SEMIVOLATILE ANALYSIS

PAGE - 2

Continuing Calibrations (continued)

Specific Findings:

1. The continuing calibration, ST20950725A, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

3-nitroaniline

SBLK1A 3YM01W 4BG01W 1BC01FDUP 1BC02F 1BF01F 1PF01F 1SF01F 1SF01F 2BC01F 2BC01F 2BC02F

2. The continuing calibration, ST20950726, contained compounds with %Ds greater than 25% D but less than-50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

SBLK20 4BG01WMSD 4BG01WMS 2SF01F 3,3'-dichlorobenzidine

011

SEMIVOLATILE ANALYSIS

PAGE - 3

Continuing Calibrations (continued)

Specific Finding;

3. The continuing calibration, ST20950728, contained compounds with %Ds greater than 25% D but less than 50% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J).

2PF01W	4-chloroaniline
3SF01F	4-nitroaniline
3SM01F	3,3'-dichlorobenzidine
5LB01W	
5RS01W	_
5BG01W	
5BG01F	
SBLK10	
2SF01W	

4. The continuing calibration, ST20950728, contained compounds with %Ds greater than 50% D but less than 90% D. For the samples and non compliant compounds listed below, qualify all positive results as estimated (J), and all non detects as estimated (UJ).

2PF01W 3SF01F 3SM01F 5LB01W 5RS01W 5BG01W 5BG01F SBLK10 2SF01W 3-nitroaniline

Internal Standards

All internal standard EICP areas met the internal standard EICP area QA/QC criteria. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 4

Method Blanks

The method blank that was analyzed exhibited contamination for phenol, di-nbutylphthalate and TICs. The method blank results will be compared to their associated samples. Refer to the glossary of data qualifiers for a list and definition of the method blank qualifiers: CRQL, U and No Action.

Specific Finding:

5. The following samples have been qualified for method blank contamination. The qualifications are for all the method blanks.

1BC01F 2SPM01F 2SS01F 4BG01F	di-n-butylphthalate	CRQL
4RS01W		
5LB01F		
2SF01WMS		
2SF01WMSD	•	
1BC02F	<u>۵</u>	
1BF01F 1SF01F		
2BC01F		
2BC02F		
2PF01W		
2SF01F		
5BG01F		

6. Reject all results for the "B" flagged TICs due to method blank contamination.

Rinseate Blanks

The rinseate blank that was analyzed did not exhibit contamination. No qualifications are required.

SEMIVOLATILE ANALYSIS

PAGE - 5

Field Blanks

The associated field blank was not identified for this SDG. No qualifications are required.

Surrogates

Surrogate recoveries for all samples and blanks did not meet QA/QC criteria. The SOW and the National Functional Guidelines allow one surrogate for each fraction to fall out side the QA/QC criteria as long as the recovery is greater than 10%. No qualifications are required.

Matrix Spike

All spike and RPD recoveries were not within advisory limits for MS/MSD 4BG01W. The MS sample exhibited a low spike recovery for pyrene. No qualifications are required.

Field Duplicates

No qualifications are required.

Compound Identification/Quantitation

No qualifications are required.

System Performance and Overall Assessment

Overall performance was fair. The laboratory did not encounter any large problems. The data reviewer estimates less than 10% of data required qualifications.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

 \mathbf{U} = Not detected

- **J** = Estimated value
- UJ = Reported Quantitation limit is qualified as estimated
- **R** = Result is rejected and unusable
- **NJ** = Presumptive evidence for the presence of the material at an estimated value
- K = Result is biased high
- L = Result is biased low

METHOD BLANK QUALIFICATION CODES

- **CRQL** = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.
- U = The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.
- No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	<u>DL</u>		PECIFIC FINDINGS
SBLK1A 3YM01W 4BG01W 1BC01FDUP 1BC02F 1BF01F 1PF01F 1SF01F 1SF01F 2BC01F 2BC02F	3-nitroaniline	+	J	1
SBLK20 4BG01WMSD 4BG01WMS 2SF01F	3,3'-dichlorobenzidine	+	J	2
2PF01W 3SF01F 3SM01F 5LB01W 5RS01W 5BG01W 5BG01F SBLK10 2SF01W	4-chloroaniline 4-nitroaniline 3,3'-dichlorobenzidine	+	J	3
2PF01W 3SF01F 3SM01F 5LB01W 5RS01W	3-nitroaniline	+/-	J/UJ	4
QL denotes the q + in the DL colur	orm I qualifier supplied by ualifier used by the data w nn denotes a positive res n denotes a non detect re	validati ult	•	

SUMMARY OF DATA QUALIFICATIONS

Page - 2

SAMPLE ID	ANALYTE ID	DL	<u>ol sp</u>	ECIFIC FINDINGS
1BC01F 2SPM01F 2SS01F 4BG01F 4RS01W 5LB01F 2SF01WMS 2SF01WMSD 1BC02F 1BF01F	di-n-butylphthalate	+	CROL	5
1SF01F 2BC01F 2BC02F 2PF01W 2SF01F 5BG01F	"P" floggod TICo		D.	6
All samples	"B" flagged TICs	+	R	6

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

¥

PESTICIDE/AROCLOR ANALYSIS

General

The organic findings offered in this screening report assume that all analytical results are correct as reported and are based upon the examination of the reported holding times, GC instrument performance, initial and continuing calibrations, analytical sequence, blank analysis results, surrogate recoveries, and MS/MSD results. All comments made within this report should be considered when examining the analytical results (Form Is). Please refer the specific findings found in each category to the Summary of Data Qualification table.

SDG # AC01F

Holding Times

All extraction and analysis holding times were met based on extraction and analysis information, chain of custody records, and the assumption that the tissue samples were frozen upon receipt. No qualifications are required.

GC Instrument Performance

The resolution requirements were met on both columns in the sequence. The analytical sequence was acceptable. All 4,4'-DDT and endrin breakdowns were within QC limits. All surrogate retention times were within the established retention time windows (RTWs). All PEM standard RPDs were within the 25% QC limit. No qualifications are required.

Initial Calibrations

The initial calibrations were not acceptable for the linearity of all compounds. Raw data was not required in this Level C data package.

Specific Findings

1. The initial calibration analyzed on instrument GC42A, 07/28/95, on the DB-608 and DB-1701 columns exhibited three (3) compounds with %RSDs outside the criteria. All positive and non-detect results for the noted compounds, in the following samples are qualified as estimated, J/UJ.

All Samples

Dieldrin 4,4'-DDE Endosulfan sulfate

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 2

Continuing Calibrations

All compounds in the calibration standards were within the laboratory reported Retention Time Windows (RTWs) for all columns. All continuing calibration standards associated with the reported samples exhibited relative percent differences, RPDs, within the QC limits with the exception of several compounds in the CCAL INDAMA%, 7/30/95, 1512, on the DB-608 column. Raw data was not required in this Level C data package.

Specific Finding

2. The continuing calibration standard INDAMA analyzed on 07/30/95 at 1512 exhibited non-compliant %Ds for all compounds on the DB-608 column. All positive and non-detect results for the noted compounds in the following samples are qualified as estimated, J/UJ.

3-SM01F		α-BHC
3-YM01W		ү-ВНС
4-BG01W		Heptachlor
4-BG01WDU		Endosulfan I
4-BG01F		Dieldrin
4-RS01W	÷	Endrin
5-LBO1W		4,4'-DDD
5-LBO1F		4,4'-DDT
5-RS01W		Methoxychlor
5-RS01F		-
5-BG01W		

Method Blanks

5-BG01F

The associated method blank did not exhibit contamination for target compounds.

Instrument Blanks

One (1) instrument blank exhibited contamination for three (3) target compounds. All compounds detected were less than the CRQLs. Qualifications were not required because the contamination was not noted in the associated field samples. The laboratory noted that a contaminated syringe caused the problem.

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 3

<u>OC</u> Blanks

QC blanks were not included in this data package.

Florisil/GPC Checks

The Florisil cartridge check and the GPC clean-up check standard exhibited acceptable spike recoveries for all compounds. Raw data was not required in the Level C data package.

Surrogate Recoveries

Many samples exhibited non-compliant DCB recoveries.

Specific Finding

3. The positive and non-detect results for the following samples are qualified as estimated, J/UJ, due to DCB recoveries below the QC limits.

1-BF01F 1-PF01F 1-SF01W 2-BC01F 2-PF01W 2-SF01W 2-SF01WDU 2-SP01F 2-SS01F 2-YM01W 2-AC01F 3-SM01F 3-YM01W 4-BG01F 4-BG01W 4-BG01WDU 4-RS01W 5-BG01W 5-LB01W 5-RS01W

DATA ASSESSMENT NARRATIVE PESTICIDE/AROCLORS

PAGE - 4

Matrix Spike/Matrix Spike Duplicate

The MS/MSD pair of sample 2-SF01W exhibited acceptable recoveries for all compounds except γ -BHC in the MS and endrin in the MS and MSD. The MS/MSD pair of sample 4-BG01W exhibited non-compliant recoveries for the compounds dieldrin, endrin, and 4,4'-DDT in the MS and the MSD, and γ -BHC in the MS. All RPDs were acceptable. No qualifications were required.

Field Duplicates

Three (3) pairs of duplicates were present in this SDG. The duplicate pairs are assumed to be laboratory duplicates because there was no indication on the sample chain of custody that they were field duplicates. Two (2) of the duplicate pairs, 1-BC01F and 2-SF01W did not exhibit positive results for target compounds. The pair of sample 4-BG01W exhibited positive results for two (2) compounds, 4,4'-DDE and 4,4'-DDD. The precision results were greater that 35%. However, standard criteria has not been established for tissue samples. The RPDs for the compounds were 40% and 50%, respectively. No qualifications were required.

Analyte Identification/Quantitation

Positive results were reported in some samples. Identification and quantitation appear reasonable based provided deliverables. Quantitation calculations were not verified because raw data is not a required deliverable for NEESA Level C QC. Sample data chromatograms were not provided although they are required with a NEESA Level C data package. Dilutions were not required. Some results exhibited P flags due to column quantitation %Ds.

Specific Finding

4. All reported positive results exhibited P flags are qualified as estimated, J, due to column quantitation %Ds >25% but <100%.

Overall Assessment

The overall quality of the data package is fair. The reported results are accepted as reported by the laboratory with the noted qualifications based on the limited deliverables in a Level C data package.

GLOSSARY OF DATA QUALIFIERS

QUALIFICATION CODES

 \mathbf{U} = Not detected

J = Estimated value

UJ = Reported quantitation limit is qualified as estimated

R = Result is rejected and unusable

NJ = Presumptive evidence for the presence of the material at an estimated value

K = Result is biased high

L = Result is biased low

METHOD BLANK QUALIFICATION CODES

CRQL = The sample result for the blank contaminant is less than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is rejected and the CRQL for that analyte is reported.

U =

The sample result for the blank contaminant is greater than the sample CRQL and is less than 10X the method blank value. The sample result for the blank contaminant is qualified as non detected at the analyte value reported.

No Action = The sample result for the blank contaminant is greater than the sample CRQL and is greater than 10X the method blank value. The sample result for the blank contaminant is not qualified with any blank qualifiers.

The specific Findings will be noted in numerical form on the Form Is in this data validation report. These specific finding footnotes will reflect the conclusions found in the data validation process that resulted in the qualification of the data.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID ANALYTE ID		DL	QL	SPECIFIC FINDINGS		
All Samples	Dieldrin 4,4'-DDE Endosulfan sulfate	+/U	J/UJ	1		
3-SM01F 3-YM01W 4-BG01W 4-BG01WDU 4-BG01F 4-RS01W 5-LB01F 5-LB01F 5-RS01W 5-RS01F 5-RS01F 5-BG01W 5-BG01F	α-BHC γ -BHC Heptachlor Endosulfan I Dieldrin Endrin 4,4'-DDD 4,4'-DDT Methoxychlor ⁻	+/U	J\NJ	2		
1-BF01F 1-PF01F 1-SF01W 2-BC01F 2-PF01W 2-SF01W 2-SF01WDU 2-SF01WDU 2-SP01F	All	+ /U	J/UJ	3		
2-SP01F 2-SS01F 2-YM01W 2-AC01F 3-SM01F 3-YM01W 4-BG01F 4-BG01W 4-BG01WDU 4-BG01WDU 4-RS01W 5-BG01W 5-BG01W 5-LB01W 5-RS01W		- -				

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE ID	DL QL		SPECIFIC FINDINGS	
All	All P	+	J	4	

DL denotes the Form I qualifier supplied by the laboratory QL denotes the qualifier used by the data validation firm + in the DL column denotes a positive result - in the DL column denotes a non detect result

DATA ASSESSMENT NARRATIVE Metals

General

The inorganic findings offered in this screening report assumes that all analytical results are correct as reported and is based upon the examination of the reported holding times, calibration standards, blank analysis results and MS/MSD results. A minimum of ten percent of all laboratory calculations are recalculated by the reviewer. All comments made within this report should be considered when examining the analytical results (Form Is).

This data package consisted of results from CTO-312, SDG# AC01F, the analysis of twenty-eight (28) field tissue samples and two Matrix Spike and Duplicate pairs for TAL Metals. Overall, the inorganic data quality was fair. All protocol requirements were followed with the exception of the following problems.

Specific QA/QC deficiency Findings are listed numerically in the following categories:

Holding Times

No holding times for tissues. The reviewer assumes that the tissues were kept frozen until analysis.

Calibration

No deficiencies in this section.

Preparation and Field Blank

1. The preparation blank exhibited contamination for the following elements.

Aluminum	1.52	mg/kg
Barium	0.04	mg/kg
Calcium	1.51	mg/kg
Chromium	0.18	mg/kg
Copper	0.15	mg/kg
Iron	0.80	mg/kg
Magnesium	2.00	mg/kg
Potassium	25.1	mg/kg
Zinc	0.09	mg/kg
Boron	0.72	mg/kg

The USEPA requires that all sample values below five times the preparation or calibration blank contamination be qualified as estimated, "U".

Metals Data Assessment Narrative (continued - Page 2)

<u>Interferences</u>

No significant interferences were observed.

Spike Recovery

2. The Matrix Spike recoveries for Arsenic, Mercury and Zinc were below the lower control limits. All positive and non-detect results are qualified as estimated, "J" or "UJ".

Duplicate

3. The Duplicate analyses for Aluminum and Calcium were outside the control limits. All positive results are qualified as estimated, "J". The RPDs for Iron, Arsenic, Manganese and Zinc were not greater than 35% and will not be gualified.

LCS

No deficiencies in this section.

Serial Dilution

4. The Serial dilutions for Barium, Calcium, Iron, Magnesium, Manganese, Potassium and Zinc were outside the control limits. All positive results are gualified as estimated, "J".

<u>MSA</u>

5. The following analytes exhibited low recovery during the GFAA spiking procedure. All positive and non-detect results are qualified as estimated, "J" or "UJ".

Analytes	Samples
Arsenic	BG01F, BG01W, LB01W, PF01W, RS01W, YM01W, 1SF01W and
	2SS01F.
Selenium	SM01F.

6. The following analytes exhibited high recovery during the GFAA spiking procedure. All positive results are qualified as estimated, "J".

Analytes Samples Thallium BG01F, BG01W, LB01F, LB01W, RS01F, RS01W and YM01W.

SUMMARY OF DATA QUALIFICATIONS

SAMPLE ID	ANALYTE	DL	OL	SPECIFIC FINDING
All tissue samples	Al, Ba, Ca, Cr, Cu, Fe, Mg, K, Zn and B.	+	U	1
All tissue samples	As, Hg and Zn.	+/U	J\UJ	2
All tissue samples	Al and Ca.	+	J	3
All tissue samples	Ba, Ca, Fe, Mg, Mn, K and Zn.	+	J	4
BG01F, BG01W, LB01W, PF01W, RS01W, YM01W, 1SF01W and 2SS01F. SM01F.	As. Se.	+/U	J\NJ	5
BG01F, BG01W, LB01F, LB01W, RS01F, RS01W and YM01W.	TI.	+	J	6

DL - denotes laboratory qualifier/reported value
 + denotes positive values
 U denotes non-detect values

QL - denotes data validation qualifier

APPENDIX L BACKGROUND METALS CONCENTRATIONS

APPENDIX L.1 BASE BACKGROUND METALS CONCENTRATIONS IN SURFACE SOIL

	6-201N-SB11-00	6-201N-SB12-00	6-201C-SB38-00	6-201C-SB39-00	78-BB-SB-00	41-BB-\$B01-00	41-BB-\$B02-00
Aluminum	1120	45.25	748	245	1490	528	1430
Antimony	4.7	4.8	1.4	1.3	0.33	2.07	0.865
Arsenic	0.28	0.29	0.91	0.28	0.22	0.356	0.317
Barium	2	2.05	16.5	3.5	8.6	1.525	4.06
Beryllium	0.095	0.1	0.03	0.03	0.11	0.1	0.09
Cadmium	0.285	0.295	0.58	0.175	0.55	0.392	0.349
Calcium	178	108	10700	402	941	18.3	54.6
Chromium	0.475	0.49	1.6	0.33	2.2	1.02	0.91
Cobalt	0.85	0.9	0.195	0.185	1.8	1.965	1.75
Copper	0.55	0.6	3.1	0.75	2	2	87.2
Iron	525	160	684	238	1020	83	970
Lead	2	3	62.9	25.1	20.4	2.59	10.9
Magnesium	11.65	10.1	200	26	118	8.85	39.1
Manganese	3.1	1	16	4.5	11.1	0.87	10.2
Mercury	0.01	0.01	0.05	0.06	0.05	0.0305	0.078
Nickel	1.6	1.65	0.8	0.75	2.2	3.55	3.15
Potassium	36.55	37.5	54.5	30.6	102	91.5	81.5
Selenium	0.47	0.485	0.5	0.465	0.31	0.311	0.277
Silver	0.95	1	0.195	0.185	0.33	0.1965	0.175
Sodium	19.65	15.85	14	4.7	67.5	44.1	39.3
Thallium	0.19	0.195	0.205	0.185	0.11	0.565	0.505
Vanadium	1.05	0.8	2.8	1.6	5.3	2.505	2.23
Zinc	0.55	0.8	23.1	4.6	28.3	2.66	6.11
Cyanide					0.265	1.23	1.09

Concentrations are in millograms per kilogram (mg/kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

	41-BB-SB03-00	41-BB-SB04-00	69-BB-\$B01-00	69-BB-SB02-00	69-BB-SB03-00	69-BB-SB04-00	74-BB-SB01-00
Aluminum	2100	5370	1310	4150	9570	5360	3110
Antimony	0.87	0.94	0.85	0.95	0.95	0.95	0.905
Arsenic	0.3205	0.345	0.31	0.345	0.79	0.35	0.3325
Barium	4.53	13.4	5.6	15.4	19.6	20.8	11.1
Beryllium	0.09	0.095	0.14	0.155	0.155	0.155	0.148
Cadmium	0.3525	0.38	0.26	0.285	0.29	0.29	0.2695
Calcium	79.2	46.3	28.2	43.6	282	53	181
Chromium	2.64	3.24	0.75	4	12.5	5.8	0.84
Cobalt	1.77	1.905	2.1	2.3	2.35	2.35	2.225
Copper	1.8	1.94	1.75	1.9	1.95	1.95	4.56
Iron	1120	2160	425	1430	9640	3890	1740
Lead	9.98	6.61	2.8	6	5.3	5.6	5.19
Magnesium	74	144	37.3	91.8	610	247	70
Manganese	11.6	11.8	15.1	12.7	12.3	8.3	9.44
Mercury	0.057	0.08	0.015	0.06	0.045	0.025	0.04
Nickel	3.2	3.45	2.9	1.6	1.65	1.65	1.56
Potassium	190	177	32.25	35.5	361	106	87.5
Selenium	0.2795	0.301	0.27	0.295	0.3	0.3	0.29
Silver	0.177	0.1905	0.045	0.045	4.3	0.39	0.046
Sodium	39.65	42.75	20	22	22.4	22.3	70.4
Thallium	0.51	0.55	0.495	0.55	0.55	0.55	0.53
Vanadium	2.255	2.43	1.8	1.95	13.5	5.6	5.21
Zinc	5.97	7.15	3.1	5.2	10.8	7.9	1.27
Cyanide	1.1	1.19	2.2	2.4	2.4	2.4	1.15

2

Concentrations are in millograms per kilogram (mg/kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

	74-BB-SB02-00	74-BB-SB03-00	74-BB-SB04-00	1-BB-SB38-00	1-BB-SB39-00	1-GW13-00	28-BB-SB37-00	28-BB-SB38-00
Aluminum	1730	1000	2100	3920	4930	1600	2840	379
Antimony	0.925	0.855	0.96	3.6	3.15	8.0	3.55	2.9
Arsenic	0.339	0.314	0.352	0.315	0.28	0.29	0.31	0.255
Barium	1.6	3.12	16	9.6	9.3	2.8	5.1	1.8
Beryllium	0.151	0.14	0.1565	0.105	0.10	0.095	0.105	0.085
Cadmium	0.275	0.2545	0.285	0.315	0.28	0.285	0.31	0.255
Calcium	46.9	43.9	377	538	353	248	114	13.10
Chromium	2.7	0.795	1.98	3.5	4.7	4.1	2.0	0.60
Cobalt	2.27	2.1	2.355	0.42	0.375	0.38	0.415	0.34
Copper	3.92	1.755	1.965	1.6	0.6	1.9	0.6	0.50
Iron	401	787	1640	2270	1470	1000	1210	444
Lead	3.79	1.14	142	5.9	4.5	4.2	2.8	1.7
Magnesium	37.5	16.1	52.5	152	183	47.2	68.8	12.9
Manganese	3.13	7.37	4.61	10.6	4.2	5.9	2.7	3.3
Mercury	0.048	0.0305	0.05	0.03	0.025	0.03	0.025	0.025
Nickel	1.59	1.475	1.65	0.8	0.65	0.65	0.750	0.6
Potassium	89	82.5	92.5	149	153	20.650	29.75	8.35
Selenium	0.296	0.274	0.307	0.42	0.375	0.38	0.415	0.34
Silver	0.047	0.0435	0.0485	0.5	0.465	0.475	0.5	0.425
Sodium	71.8	87.6	122	11.0	17.2	7.25	28.5	18.2
Thallium	0.54	0.4985	0.56	0.42	0.38	0.38	0.415	0.34
Vanadium	1.94	1.8	4.69	7.9	6.1	3.5	3.6	2.1
Zinc	1.15	1.97	2.87	7.2	4.0	1.4	0.9	0.71
Cyanide	1.17	1.08	1.21					

Concentrations are in millograms per kilogram (mg/kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R. U. and UJ have been given one-half the detection value.

	28-GW09DW-00	30-BB-SB12-00	30-BB-SB13-00	30-BB-SB14-00	30-BB-SB15-00	30-BB-SB16-00	30-GW03-00	35-SS01-00
Aluminum	5460	54.6	24.9	49.2	37.5	196	17.7	2220.0
Antimony	3.35	3.2	3.2	3.3	3.5	3.650	3.9	2.45
Arsenic	1.8	0.28	0.29	0.29	0.31	0.325	0.34	0.065
Barium	11.6	1.8	0.7	0.7	0.7	3.100	0.8	15.6
Beryllium	0.10	0.095	0.10	0.10	0.10	0.110	0.12	0.11
Cadmium	0.295	0.28	0.29	0.29	0.31	0.325	0.34	0.04
Calcium	368	11.45	4.3	9.9	9.0	172	5.2	605.0
Chromium	6.0	1.6	0.7	1.9	0.7	0.75	0.8	1.9
Cobalt	0.91	0.375	0.38	0.38	0.41	0.43	0.45	0.60
Copper	2.9	0.55	0.6	0.6	0.6	0.65	0.7	3.9
Iron	2250	276	102	218	69.7	167	80.4	1250.0
Lead	11.6	3.3	0.47	2.4	0.73	4.4	0.86	3.60
Magnesium	157	6.5	2.6	2.6	2.8	37.1	3.1	71.6
Manganese	4.1	11.9	4.4	9.5	1.3	2.5	. 2.3	5.5
Mercury	0.025	0.06	0.02	0.03	0.05	0.03	0.03	0.065
Nickel	1.9	0.65	0.7	0.7	1.7	0.9	0.8	1.3
Potassium	158	8.25	11.1	3.8	1.0	29.6	1.2	129.5
Selenium	0.94	0.375	0.38	0.38	0.41	0.43	0.45	0.075
Silver	0.49	0.47	0.47	0.48	0.5	0.6	0.6	0.16
Sodium	15.0	14.8	26.0	4.9	5.2	18.2	5.8	126.00
Thallium	0.395	0.375	0.38	0.38	0.41	0.43	0.45	0.06
Vanadium	8.3	1.7	0.75	1.7	0.31	0.76	0.34	3.60
Zinc	6.6	0.35	0.30	0.48	1.7	2.0	1.2	7.4
Cyanide								

Concentrations are in millograms per kilogram (mg/kg). Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

	BB-SB02-00	BB-\$B03-00	16-BB-SB01-00	16-BB-SB02-00	16-BB-SB03-00	80-BB-SB01-00	80-BB-SB02-00	80-BB-SB03-00
Aluminum	3630.0	1950.0	1710.0	3630	1950	2240.0	7770.0	2850.0
Antimony	5.00	5.55	5.05	5	5.55	1.35	1.40	1.40
Arsenic	1.000	1.100	1.000	1	1.1	0.250	3.200	0.265
Barium	7.4	7.0	4.1	7.4	7	9.9	13.0	11.6
Beryllium	0.10	0.11	0.23	0.1	0.11	0.020	0.10	0.06
Cadmium	0.50	0.55	1.00	0.5	0.55	0.165	0.175	0.175
Calcium	113.0	227.0	96.8	113	227	505	997.0	239.0
Chromium	3.3	2.5	1.0	3.3	2.5	1.200	10.0	2.0
Cobalt	1.00	1.10	1.00	1	1.1	0.205	1.30 •	0.45
Copper	1.0	1.1	1.0	1	1.1	1.3	2.2	0.92
Iron	2150.0	1610.0	1260.0	2150	1610	604.0	5550.0	1450.0
Lead	5.20	10.20	7.40	5.2	10.2	7.5	8.90	8.30
Magnesium	99.1	69.4	42.9	99.1	69.4	94.8	289.0	94.2
Manganese	7.4	5.5	6.9	7.4	5.5	66.0	30.7	12.8
Mercury	0.055	0.055	0.055	0.055	0.055	0.050	0.050	0.060
Nickel	2.0	2.25	2.00	2	2.25	1.4	2.70	1.40
Potassium	1.0	111.5	101.0	100	111.5	163.0	416.0	90.9
Selenium	0.500	0.550	0.500	0.5	0.55	0.285	0.300	0.300
Silver	0.50	0.55	0.50	0.5	0.55	0.220	0.23	0.23
Sodium	25.20	26.20	35.90	25.2	26.2	24.1	77.10	72.70
Thallium	1.00	1.10	1.00	1	1.1	0.435	0.46	0.465
Vanadium	5.40	3.10	4.50	5.4	3.1	2.3	14.70	4.30
Zinc Cyanide	8.7	22.1	9.2	4.35	22.1	6.1	12.9	3.5

Concentrations are in millograms per kilogram (mg/kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

	7-BB-SB01-00	7-BB-8B02-00	7-BB-SB03-00	36-BB-SB01-00	36-BB-SB02-00	36-BB-SB03-00	43-BB-SB01-00	43-BB-SB02-00
Aluminum	7180.0	3770.0	5800.0	6950	2300	2380	3520	2510
Antimony	6.05	5.50	5.60	1.15	1.2	1.75	2.35	2.3
Arsenic	1.200	1.100	3.900	0.42	0.205	0.17	0.51	0.55
Barium	12.0	10.2	9.7	13.2	12.4	14	6.3	10.8
Beryllium	0.26	0.11	0.11	0.03	0.035	0.075	0.105	0.1
Cadmium	0.600	0.550	0.550	0.31	0.3	0.235	0.335	0.31
Calcium	397.0	69.5	615.0	462	897	1690	1180	908
Chromium	8.4	3.8	10.6	7.9	2.7	3.1	2.8	2.8
Cobalt	1.20	1.10	1.10	0.245	0.255	0.255	0.345	0.335
Copper	1.20	1.10	2.30	2.8	2.8	4.9	0.7	11.2
Iron	3050.0	2170.0	7510.0	6670	1750	1560	1050	2050
Lead	7.10	6.40	8.70	10.3	17.5	39.6	6.6	13.6
Magnesium	104.0	50.5	79.5	185	105	86	68.9	56,4
Manganese	3.25	3.1	1.8	6.9	14.3	21.4	3	5
Mercury	0.060	0.060	0.060	0.045	0.05	0.045	0.13	0.12
Nickel	2.40	2.20	2.25	0.45	1.6	0.9	1.25	1.2
Potassium	121.0	110.0	111.5	138	60.2	58	78.5	76
Selenium	0.600	0.550	1.300	0.12	0.16	0.135	0.195	0.17
Silver	0.60	0.55	0.55	0.265	0.275	0.255	0.345	0.335
Sodium	15.80	15.25	17.30	13.1	14.1	14.05	14.45	9.9
Thallium	1.200	1.100	1.100	0.055	0.075	0.1	0.12	0.105
Vanadium	9.70	5.40	18.20	15.4	8.3	6.4	1.6	3.7
Zinc Cyanide	5.3	2.9	3.8	6	12.7	20.8	2.6	16.7

Concentrations are in millograms per kilogram (mg/kg). Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

	43-BB-SB03-00	44-BB-SB01-00	54-BB-SB01-00	54-BB-SB02-00	86-BB-SB01-00	MIN	MAX	AVG	2Xaverage
Aluminum	2730	4950	8990	4950	6590	17.7	9570	2970.297	5940.594
Antimony	2.2	1.2	1.25	1.3	1.95	0.33	8	2.672	5.344
Arsenic	0.67	1.3	1.1	1.2	0.45	0.065	3.9	0.652	1.305
Barium	13	14.9	18.7	13.3	13.9	0.65	20.8	8.680	17.360
Beryllium	0.095	0.08	0.0345	0.0375	0.085	0.02	0.26	0.103	0.205
Cadmium	0.3	0.325	0,335	0.34	0.265	0.04	1	0.344	0.688
Calcium	1610	668	1020	3590	3960	4.25	10700	698.394	1396.788
Chromium	2.9	5.9	9.2	6.8	6.5	0.33	12.5	3.346	6.693
Cobalt	0.32	0.43	0.375	0.41	0.285	0.185	2.355	0.961	1.923
Copper	0.75	2.5	2.1	4.2	2.2	0.5	87.2	3.600	7.200
Iron	1110	3220	4700	2780	4030	69.7	9640	1877.531	3755.063
Lead	13.8	19.6	3.95	12.3	21.5	0.47	142	11.875	23.749
Magnesium	60.5	189	371	259	233	2.55	610	102.875	205.751
Manganese	6.5	6.7	14.8	19.9	11.5	0.87	66	9.248	18.497
Mercury	0.05	0.06	0.041	0.04	0.04	0.01	0.13	0.047	0.094
Nickel	1.15	1.7	1.3	1.6	7.2	0.45	7.2	1.717	3.434
Potassium	73.5	220	223	175	160	1	416	99.805	199.610
Selenium	0.185	0.34	0.145	0.13	0.43	0.075	1.3	0.373	0.746
Silver	0.32	0.28	0.285	0.295	0.285	0.0435	4.3	0.438	0.875
Sodium	12.7	12.75	8.3	9.55	18.3	4.7	126	29.649	59.298
Thallium	0.11	0.065	0.065	0.06	0.13	0.055	1.2	0.450	0.899
Vanadium	4	11.8	13.4	9.1	48.6	0.305	48.6	5.814	11.628
Zinc	4.5	7.4	7.2	9.1	18.4	0.3	28.3	6.940	13.880
Cyanide						0.265	2.4	1.453	2.905

Concentrations are in millograms per kilogram (mg/kg).

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

APPENDIX L.2 BASE BACKGROUND METALS CONCENTRATIONS IN SUBSURFACE SOIL

	6-201N-SB11-07	6-201N-SB12-02	6-201C-SB38-01	6-201C-SB39-04	78-BB-SB-01	2-GW09-01	1-BB-SB38-05
Aluminum	672	857	3620	2970	10200	8520	4580
Antimony	4.7	4.85	1.4	1.25	0.355	1.6	4.2
Arsenic	0.31	0.315	0.033	0.305	0.24	0.47	1.1
Barium	2	2.05	7.6	6.5	10.9	6.6	7.5
Beryllium	0.095	0.1	0.03	0.025	0.12	0.23	0.125
Cadmium	0.285	0.295	0.57	0.17	0.6	1.2	0.370
Calcium	5.35	5.4	4410	12.1	81.3	10.6	35.600
Chromium	1.6	1.85	6	2.2	5.7	8.7	10.5
Cobalt	0.65	0.9	0.235	0.175	0.95	1.9	0.495
Copper	0.475	0.6	1.7	0.65	0.95	0.47	6.6
Iron	257	126	456	833	822	2840	4940
Lead	1.2	1.6	11.5	2.7	6.1	4.3	5.1
Magnesium	13.1	12.7	133	86.8	188	260	222
Manganese	0.475	0.395	7.5	2.6	2.4	5.2	4.1
Mercury	0.01	0.01	0.04	0.015	0.045	0.11	0.025
Nickel	1.6	1.7	0.8	0.7	2.4	4.7	0.850
Potassium	48.9	40.8	84.7	187	123	184	409
Selenium	0.5	0.5	0.55	0.5	0.29	0.115	0.495
Silver	0.95	1	0.195	0.175	0.355	0.7	0.600
Sodium	12.7	12.15	13.25	7.25	44.9	31.5	12.850
Thallium	0.205	0.21	0.22	0.2	0.12	0.23	0.495
Vanadium	0.75	1	3	4.7	7.4	13.4	12.200
Zinc	0.475	0.395	11.6	0.9	2.1	1.4	4.700

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

	1-BB-SB39-04	1-BB-\$B39-06	1-GW13-04	1-GW13-08	28-BB-SB37-03	28-BB-SB38-04	28-GW09DW-01
Aluminum	6180	5980	4160	6600	5170	2830	5730
Antimony	3.25	2.95	6.9	3.2	3.55	3.55	3.75
Arsenic	0.29	0.26	0.285	0.280	0.315	0.315	1.500
Barium	11.800	8.600	7.500	8.400	9.700	5.000	11.700
Beryllium	0.095	0.085	0.095	0.095	0.105	0.105	0.110
Cadmium	0.290	0,260	0.285	0.280	0.315	0.315	0.330
Calcium	12,250	19.700	52.400	92.600	23.450	6.850	441.000
Chromium	5.5	5.3	7.1	8.3	7.3	3.4	4.7
Cobalt	0.385	0.350	0.380	0.375	0.42	0.42	0.93
Copper	0.6	0.5	2.1	1.6	0.65	0.65	0.65
Iron	1510	1210	567	959	2090	749	2780
Lead	3.8	3.1	3.3	4.0	4.1	2.3	7.4
Magnesium	189	217	131	262	153	66	157
Manganese	4.9	5.4	2.0	4.5	3.2	1.5	5.3
Mercury	0.025	0.020	0.050	0.025	0.025	0.025	0.025
Nickel	2.300	0.600	0.650	0.650	0.750	0.750	1
Potassium	191	268	98	308	122	91.3	136
Selenium	0.385	0.350	0.380	0.375	0.420	0.420	0.440
Silver	0.480	0.435	0.475	0.470	0.500	0.550	0.550
Sođium	21.6	9.2	9.6	10.9	33.8	28.6	20.3
Thallium	0.385	0.350	0.380	0.375	0.420	0.420	0.440
Vanadium	6.500	6.100	3.500	10.100	6.4	2.8	8.5
Zinc	2.900	2.400	1.000	2.700	1.9	1.0	4.2

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

	30-BB-SB12-03	30-BB-SB13-01	30-BB-SB14-01	30-BB-SB15-01	30-BB-SB16-02	30-GW03-01	35-GWD801-03
Aluminum	2970	17.1	25.7	42.6	777	16.9	2910
Antimony	3.9	3.1	3.6	3.6	3.4	3.9	2.750
Arsenic	0.34	0.28	0.32	0.32	0.30	0.34	0.12
Barium	0.8	0.7	0.8	0.8	3.5	0.8	5.5
Beryllium	0.12	0.09	0.11	0.11	0.10	0.12	0.06
Cadmium	0.34	0.28	0.32	0.32	0.30	0.34	0.30
Calcium	7.0	6.9	4.8	6.3	116	6.6	456.0
Chromium	3.9	0.7	0.8	0.8	0.7	0.8	2.2
Cobait	0.45	0.37	0.42	0.43	0.40	0.46	0.65
Copper	0.7	0.6	0.7	0.7	0.6	0.7	0.550
Iron	908	95.9	155	63.3	514	74.5	442
Lead	0.7	0.47	1.9	0.91	3.2	0.59	8.1
Magnesium	24.7	7.5	2.9	2.9	30.2	3.1	63.5
Manganese	1.7	4.3	6.7	1.1	3.7	1.7	5.6
Mercury	0.03	0.03	0.08	0.25	0.03	0.68	0.03
Nickel	0.8	0.7	0.8	2.2	1.7	0.8	1.050
Potassium	13.2	6.3	1.1	21.3	21.9	1.2	145
Selenium	0.45	0.37	0.42	0.43	0.40	0.46	0.085
Silver	0.6	0.46	0.6	0.6	0.50	0.6	0.39
Sodium	12.5	11.1	19.3	5,4	14.4	5.8	141.0
Thallium	0.45	0.37	0.42	0.43	0.40	0.46	0.06
Vanadium	6.2	0.73	1.0	0.84	1.6	0.34	3.0
Zinc	0.35	0.32	0.39	1.2	1.7	1.3	2.6

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

	BB-SB02-07	BB-SB03-05	80-BB-SB01-06	80-SS-SB01-03	80-BB-SB2-03	80-BB-SB02-06	80-BB-SB03-03
							-
Aluminum	888	2330	11000	2520	5950	9600	9500
Antimony	5.000	5.600	6.200	1.300	1.350	1.650	3.500
Arsenic	1.00	1.10	15.40	0.245	1.60	4.70	1.80
Barium	1.6	3.8	22.3	4.5	9.9	13.5	10.9
Beryllium	0.10	0.11	0.31	0.01	0.04	0.20	0.09
Cadmium	0.50	0.55	0.205	0.16	0.165	0.205	0.16
Calcium	74.2	290.0	257.0	105.0	323.0	210.0	142.0
Chromium	2.4	4.2	66.4	2.1	10.0	22.0	12.0
Cobalt	1	1.1	7	0.42	0.71	- 1.40	0.75
Copper	1	1.1	9.5	0.670	1.6	4.4	2.2
Iron	1220	1870	90500	795	2920	12800	3350
Lead	2.4	3.8	21.4	2.9	5	11.7	7.8
Magnesium	35.7	115.0	852.0	76.0	282.0	455.0	357.0
Manganese	2.7	2.4	14.9	1.8	19.9	7.4	6.2
Mercury	0.055	0.06	0.07	0.045	0.055	0.07	0.045
Nickel	2	2.250	0.600	0.455	1.4	0.6	2.2
Potassium	100.5	228	1250	161	. 297	1020	458
Selenium	0.500	0,550	2.400	0.275	0.285	0.355	0.275
Silver	0.50	0.55	0.275	0.21	0.22	0.275	0.21
Sodium	20.6	28.2	124.0	63.4	25.5	47.1	73.2
Thallium	1.00	1.10	2.70	0.425	0.44	0.55	0.42
Vanadium	3.9	4.9	69.4	2.3	10.8	18.4	13.5
Zinc	8.7	4.9	26.6	2.0	3.5	8.1	4.8

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

	80-BB-SB03-06	7-BB-SB01-05	7-BB-SB02-05	7-BB-SB03-09	16-BB-SB01-07	16-BB-\$B02-07	16-BB-SB03-05
Aluminum	1060	1400	1700	581	1940	888	2330
Antimony	1.300	5.150	5.150	5.750	5.8	5	5.6
Arsenic	0.24	1.05	1.05	1.15	1.15	1	1.1
Barium	4.3	16.1	22.6	10.8	3.7	0.8	3.8
Beryllium	0.01	0.105	0.105	0.115	0.115	0.1	0.11
Cadmium	0.155	0.50	0.50	0.550	0.6	0.5	0.55
Calcium	34.2	38.95	41.55	32.15	135	74.2	290
Chromium	2.9	5.0	6.2	3.9	4.7	2.4	4.2
Cobalt	0.20	1.05	1.05	1.15	1.15	1	1.1
Copper	0.630	1.05	1.05	1.15	1.15	1	1.1
Iron	557	571	709	1620	1150	1220	1870
Lead	5.4	3	1.8	1.1	2.9	2.4	3.8
Magnesium	50.7	30.6	44.1	12.25	104	35.7	115
Manganese	5.4	1.95	2.65	2.1	5	2.7	2.4
Mercury	0.045	0.055	0.050	0.060	0.06	0.055	0.06
Nickel	0.450	2.050	2.050	2.300	2.3	2	2.25
Potassium	130	103	102.5	114.5	116	100.5	228
Selenium	0.275	0.50	0.50	0.55	0.6	0.5	0.55
Silver	0.21	0.50	0.50	0.55	0.6	0.5	0.55
Sodium	18.3	16.85	13.6	15.65	29.8	10.3	28.2
Thallium	0.42	1.05	1.05	1.15	1.15	1	1.1
Vanadium	2.4	2.3	3.1	2.5	4	3.9	4.9
Zinc	1.7	3.1	2.1	3.15	15	4.35	2.45

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

,

	36-BB-SB01-02	36-BB-SB02-02	36-BB-8B03-03	43-BB-SB01-02	43-BB-SB02-01	43-BB-SB03-02	44-BB-SB01-03
Aluminum	4480	8700	3810	4320	959	2260	10300
Antimony	1.15	1.2	1.9	2.3	1.75	2.25	1.15
Arsenic	0.155	0.69	0.185	0.44	0.115	0.31	1.2
Barium	13.9	13.7	5.5	8.9	2.2	9.1	12.5
Beryllium	0.032	0.035	0.08	0.1	0.075	0.1	0.065
Cadmium	0.31	0.315	0.255	0.31	0.235	0.305	0.305
Calcium	116	225	48.2	76.9	77.6	295	20.9
Chromium	4.2	13.5	3.7	5.5	1.2	2	11
Cobalt	0.245	0.25	0.275	0.335	0.255	0.33	0.495
Copper	0.43	0.98	0.175	0.21	0.16	0.265	0.86
Iron	2690	4080	976	2370	414	507	4720
Lead	5.4	6.6	4	6.1	1.6	2.8	4.15
Magnesium	78.6	292	110	121	17.9	49.3	302
Manganese	2.5	6.7	3.6	3	1.3	2.5	3.9
Mercury	0.06	0.06	0.045	0.045	0.05	0.055	0.0425
Nickel	1	9.1	1	1.2	0.9	1.2	0.92
Potassium	91.3	222	62.5	76	57.5	75	207
Selenium	0.12	0.175	0.145	0.185	0.155	0.17	0.155
Silver	0.27	0.27	0.275	0.335	0.255	0.33	0.26
Sodium	11.3	25.6	6.1	36.65	4.2	8.75	86.4
Thallium	0.055	0.085	0.105	0.11	0.095	0.105	0.07
Vanadium	8.2	17	2.05	5.9	0.9	1.7	17.1
Zinc	0.82	2.6	0.89	2.3	0.76	1.6	2.5

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

	54-BB-SB01-04	54-BB-8B02-04	86-BB-SB01-02	65-DW04-05	MIN	MAX	AVG
Aluminum	1100	1040	2460	4560	16.900	11000.000	3706.615
Antimony	1.25	1.25	2	5.25	0.355	6.900	3.249
Arsenic	0.16	0.195	0.22	1.05	0.033	15.400	0.985
Barium	1.15	1.05	4.4	10.9	0.650	22.600	7.185
Beryllium	0.06	0.0345	0.09	0.105	0.010	0.310	0.096
Cadmium	0.325	0.335	0.275	0.5	0.155	1.200	0.359
Calcium	24.6	14.7	50.8	111	4.750	4410.000	193.912
Chromium	1.15	1	3.1	5.7	0.650	66.400	6.268
Cobalt	0.26	0.305	0.29	3.2	0.175	7.000	0.805
Copper	0.45	0.46	0.185	1.05	0.160	9.500	1.205
Iron	392	319	3160	925	63.300	90500.000	3567.320
Lead	0.8	1.75	2.4	2.7	0.465	21.400	4.132
Magnesium	16.4	17.35	71.3	192	2.850	852.000	131.699
Manganese	0.5	0.6	1.8	5.6	0.395	19.900	3.995
Mercury	0.11	0.05	0.055	0.05	0.010	0.680	0.065
Nickel	9.2	7.7	1.05	2.1	0.450	9.200	1.863
Potassium	29.9	14.45	66.5	105	1.050	1250.000	172.126
Selenium	0.145	0.17	0.175	0.5	0.085	2.400	0.403
Silver	0.28	0.29	0.29	0.5	0.175	1.000	0.434
Sodium	4.4	2.2	6.8	69.9	2.200	141.000	27.285
Thallium	0.065	0.08	0.13	1.05	0.055	2.700	0.490
Vanadium	0.85	0.8	1.85	4.1	0.340	69.400	6.670
Zinc	0.92	1.3	0.37	3.45	0.320	26.600	3.334

Concentrations are in millogrms per kilogram (mg/Kg).

1

Qualifiers have been removed per Baker's standards.

Qualifiers R, U, and UJ have been given one-half the detection value.

Qualifiers J, NJ, and B have been removed with no detection value change.

Aluminum	7413.230
Antimony	6.498
Arsenic	1.971
Barium	14.370
Beryllium	0.191
Cadmium	0.718
Calcium	387.824
Chromium	12.537
Cobalt	1.611
Copper	2.410
Iron	7134.639
Lead	8.264
Magnesium	263.398
Manganese	7,990
Mercury	0.129
Nickel	3.725
Potassium	344.252
Selenium	0.806
Silver	0.869
Sodium	54.570
Thallium	0.980
Vanadium	13.340
Zinc	6.668

2Xaverage

Concentrations are in millogrms per kilogram (mg/Kg). Qualifiers have been removed per Baker's standards. Qualifiers R, U, and UJ have been given one-half the detection value. Qualifiers J, NJ, and B have been removed with no detection value change.

10/23/95/SUBBACK.WK4

APPENDIX M EVALUATION OF METALS IN GROUNDWATER

DRAFT

EVALUATION OF METALS IN GROUNDWATER

MARINE CORPS BASE, CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0177

JUNE 3, 1994

Prepared for:

DEPARTMENT OF THE NAVY ATLANTIC DIVISION NAVAL FACILITIES ENGINEERING COMMAND Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC. Coraopolis, Pennsylvania

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	STUDY OBJECTIVES	1
3.0	SCOPE OF WORK	2
4.0	DATA ANALYSIS	3
5.0	ANALYSIS OF STUDY OBJECTIVES	8
6.0	CONCLUSIONS	10
7.0	RECOMMENDATIONS	10

FIGURES

- 1 Site Location Map
- 2 Positive Detections Above Applicable Federal and State Standards for Total and Filtered Inorganic Analytes in Groundwater-Site 2
- 3 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Shallow Wells-Site 78
- 4 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Intermediate Wells-Site 78
- 5 Positive Detections of Total Metals Above Federal MCLs and NCWQS in Deep Wells-Site 78

TABLES

- 1 Summary of Total Metals in Shallow Wells
- 2 Comparison of Repeat Sampling in Shallow Wells
- 3 Summary of Dissolved Metals in Shallow Wells
- 4 Summary of Total Metals in Upgradient Wells
- 5 Comparison of Inorganic Subsurface Soil Concentrations in "Clean" and "Contaminated" Wells
- 6 Total Metals in Deep Monitoring Wells
- 7 Summary of Field Parameters in Shallow, Deep, and Supply Wells

1.0 INTRODUCTION

Numerous groundwater investigations have been conducted at Marine Corps Base (MCB), Camp Lejeune under the Department of the Navy (DON) Installation Restoration Program (IRP). These studies have identified elevated levels of total metals in shallow groundwater at almost every site. The degree of contamination, based on dissolved metals analysis of groundwater samples, is limited. It is believed that the presence of elevated metals are not always related to past disposal activities for several reasons, which is the basis of this study.

Currently, Records of Decision (ROD) are being prepared for Operable Units No. 1 (Sites 21, 24, and 78) and No. 5 (Site 2). Both RODs are proposing to not remediate shallow groundwater which contains elevated levels of total metals above State groundwater standards (i.e., North Carolina Water Quality Standards) and/or Federal drinking water standards (i.e., Maximum Contaminant Levels). Specifically, remediation of shallow groundwater due to elevated total metals is not cost effective, or practical, due to the following: (1) the shallow aquifer is not used for potable supply; (2) the source of metals in groundwater cannot be correlated with soil data or previous disposal practices; (3) the extent of shallow groundwater contamination (based on total metals analysis) is widespread and in many cases undefinable, since there are no apparent contaminant plumes or patterns associated with the metals; and (4) deep groundwater, which is the source of potable water, is not significantly contaminated with metals above the standards.

2.0 STUDY OBJECTIVES

The DON/Marine Corps initiated a study on inorganics in groundwater throughout MCB Camp Lejeune to assess whether total metals in groundwater are related to disposal practices or to other factors. The overall goal of this study is to provide information that would be used in consideration of not remediating shallow groundwater at Operable Units No. 1 and No. 5, and possibly other operable units where total metals are elevated without cause. The following study objectives were identified:

- (1) Determine whether the elevated total metals detected in the shallow aquifer are related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples;
- (2) Determine whether total metals in shallow groundwater are elevated throughout the region or MCB Camp Lejeune;
- (3) Determine whether there is a correlation between elevated total metals in groundwater and metals in soil; and

(4) Determine whether the concentrations of total metals (i.e., low versus high) is related to shallow and deep aquifer characteristics.

3.0 SCOPE OF WORK

Groundwater and soil data from a total of 21 sites were compiled as part of the overall study. Three of the 21 sites are located outside the boundary of the base. These sites include the ABC Cleaners Superfund Site, located along Route 24 in Jacksonville, and two sites located along Highway 17 (Off-site Properties No. 1 and No. 2). The two sites along Route 17 were investigated by the DON/Marine Corps as part of a real estate survey. The other 18 sites are located throughout various portions of MCB Camp Lejeune (see Figure 1).

Information from studies conducted by Baker and other consultants were obtained to evaluate metal concentrations in groundwater. The study focused on 14 metals of potential concern to human health and the environment. Some of the information was collected under the IR Program whereas other information was obtained during other investigations (e.g., ABC Cleaners RI/FS). The following data tables were then prepared to determine why total metals are generally elevated in shallow groundwater.

- Table 1 Total Metal Concentrations in Shallow Groundwater by Site
- Table 2 -Summary of Repeat Sampling of Shallow Wells (Sites 2 and 78)
- Table 3 Dissolved Metal Concentrations in Shallow Groundwater by Site
- Table 4 Summary of Total Metal Concentrations in Upgradient Wells
- Table 5 Comparison of Subsurface Metal Concentrations in Uncontaminated and Contaminated Wells
- Table 6 Total Metal Concentrations in Deep Groundwater by Site
- Table 7 Summary of Field Parameters in Shallow Monitoring Wells, Deep Monitoring

 Wells, and Supply Wells
 Supply Wells

The tables are presented at the end of this report.

4.0 DATA ANALYSIS

The following discussion represents an analysis of the information contained in each of the previously mentioned tables.

Table 1 (Total Metal Concentrations in Shallow Groundwater)

All of the sites had at least one (and in most cases several) metal which exceeded either State water quality standards or Federal drinking water standards. The most frequently detected metals included chromium, lead, and manganese, which were detected at almost every site above drinking water standards. Other frequently detected metals which exceeded drinking water standards included arsenic, beryllium, cadmium, and nickel.

An analysis of the data from Table 1 indicates that elevated total metals are present in shallow groundwater at every site, including the three sites which are located off base. The two sites which did not exhibit significant contamination include the ABC Cleaners site (only chromium exceeded the standards) and Site 48 (only manganese exceeded the standards).

Total metals detected in shallow groundwater at Site 2 exceeded State and/or Federal standards in seven of the 11 shallow monitoring wells. Manganese was the most frequently detected metal (7/11). Lead (3/11), chromium (2/11), and cadmium (1/11) were also detected above the standards,, but less frequently (see Figure 2).

With the exception of Wells 78GW03 and 78GW19, total metals were detected at Site 78 (Hadnot Point Industrial Area) above Federal MCLs or NCWQS in every shallow well (see Figure 3). The extent of elevated total metals in groundwater is widespread, encompassing approximately one square mile (or approximately 660 acres) in total area. The distribution and concentration of total metals in shallow groundwater makes it virtually impossible to identify or illustrate contaminant plumes (see Figure 3).

An analysis of the total metals results indicates the following pattern. Samples exhibiting elevated levels of lead, chromium, or other contaminants of concern, also exhibited elevated levels of other metals such as aluminum, antimony, iron, and zinc. Samples which did not exhibit elevated levels of lead, chromium, or manganese also did not exhibit elevated levels of other metals. This pattern indicates that the elevated total metals are not limited to one or

3

two contaminants, which would be the case if a lead or chromium plume in the groundwater truly existed. In other words, if a site is impacted by a particular metal due to disposal activities (say chromium for example), then other metals such as aluminum, lead, or zinc should not be consistently elevated as in the case of samples collected from the shallow aquifer at MCB Camp Lejeune. This point is depicted in the data summary tables provided in Appendix A for Sites 2 and 78. These tables were taken from the Remedial Investigation Reports for Operable Units No. 1 and No. 5. As an example, note that sample numbers 78-MW08, 78-MW10, 78-MW11, and 78-MW12 all had elevated levels of total metals when compared to samples 78-MW09-2 and 78-MW09-3. It is clear that most of the metal concentrations in a particular sample follow a consistent pattern throughout.

Table 2 (Comparison of Repeat Sampling of Shallow Wells

Five wells from Sites 2 and 78 were randomly chosen to evaluate total metals concentrations between sampling rounds. The comparison was limited to only chromium, lead, and manganese since these contaminants were frequently detected throughout MCB Camp Lejeune. In several cases, metal concentrations were significantly different between the sampling rounds. If the shallow aquifer was impacted due to former disposal activities, a contaminant plume would be present and concentrations would not significantly deviate. The deviation in metal concentrations may indicate that sampling results are biased due to suspended particulates in the samples.

Table 3 (Dissolved Metal Concentration in Shallow Groundwater by Site)

The data base for Table 3 was limited to 12 sites since many of the previous investigations (i.e., prior to Navy CLEAN) did not analyze for dissolved metals. Nevertheless, an analysis of the 12 sites revealed that elevated levels of dissolved metals in groundwater is limited. Manganese was the most frequently detected metal above drinking water standards (10 of 12 sites exhibited elevated levels). Lead was detected at only one site (Site 21) above drinking water standards. Chromium was also detected at only one site (Site 78) above drinking water standards. No other metal was detected above the standards.

Literature searches have indicated that manganese is a naturally occurring metal in North Carolina. Therefore, the presence of manganese may not be attributable to site-related activities (Greenhorne & O'Mara, 1992). An analysis of the data from Table 3 clearly shows a significant reduction in metal concentrations when compared to Table 1 (total metals in shallow groundwater). One possible reason for this reduction is that suspended solids or particles are not being introduced into the analysis of the sample due to filtering. A second possibility is that the metals are not significantly present in a dissolved state in shallow groundwater due to the species of metals under site conditions. It should be noted that calcium and sodium did not exhibit such a pattern since the salts of these metals are more soluble in water. For example, the concentrations of total calcium and total sodium versus dissolved calcium and dissolved sodium are similar and are not affected by the removal of the particulates during filtering. The fact that these salts do not exhibit the pattern that the other metals show supports the possibility that total metal concentrations are influenced by particulates in the sample.

Table 4 (Total Metals in Upgradient Shallow Wells)

The data base for Table 4 consists of groundwater results from 14 upgradient shallow monitoring wells (i.e., one well per site). These wells were installed to determine baseline groundwater quality to which on-site groundwater conditions could be compared. In some cases, the upgradient wells were located in areas where other base activities may have influenced groundwater quality.

The analysis of this data shows that manganese was the most frequently detected metal above Federal or State standards in upgradient shallow wells. Manganese was detected in 7 of the 14 upgradient wells above drinking water standards. Chromium and lead were also frequently detected above drinking water standards in upgradient (background) wells. These contaminants were detected in 6 of the 14 upgradient wells. At Site 2, samples collected from an upgradient well (2GW9) exhibited elevated levels of chromium ($83\mu/1$), lead ($27.2\mu/1$) and manganese ($747\mu/1$). At Site 78, samples collected from upgradient wells 96W4 and 78GW26 did not exhibit elevated levels of total metals. The concentration range for metals detected above NC WQS and/of Federal MCLs in upgradient wells is provided below:

- beryllium (ND-46.5 μ/l)
- cadmium (ND-10 µ/l)
- chromium (ND-198 µ/l)
- lead (ND-78.8 µ/l)
- manganese (ND-747 µ/l)
- mercury (ND-1.6J µ/l)

5

Based on the above range representing upgradient wells, none of the on-site wells at Site 2 exhibited total metals above the maximum background concentrations. However, at Site 78, lead and chromium were detected above the maximum background in several on-site wells.

An analysis of the data from Table 4 indicates that shallow groundwater upgradient of some sites contains total metals above drinking water standards. A comparison of Table 4 data against Table 1 data indicates that shallow groundwater samples from upgradient wells are less contaminated than samples collected from on-site monitoring wells. However, it should be noted that the data base for Table 4 consists of only 14 wells whereas the data base for Table 1 consists of over 130 wells. Therefore, to assume that upgradient groundwater quality is better than on-site groundwater quality may not be justified due to the different data bases.

<u>Table 5 (Comparison of Subsurface Metal Concentrations in Uncontaminated and</u> <u>Contaminated Wells)</u>

The purpose of this table is to determine whether metal concentrations in soils correlate with the elevated levels of metals in shallow groundwater.

To evaluate this, metals in subsurface soils, representing an area of groundwater contamination, were compared to metals in subsurface soil in areas which did not exhibit groundwater contamination. If the elevated total metals in shallow groundwater are present due to former disposal activities, subsurface metals in soil representing an area of groundwater contamination would be expected to be elevated or higher than metals in subsurface soil representing a non-contaminated area. This evaluation assumes that the well exhibiting elevated total metals is within a source area and that the soil sample is representative of soil impacted by metal contamination.

As shown on Table 5, there is no clear pattern or correlation which indicates that elevated total metals are due to soil contamination. Note that in many cases, the concentration of metals which represent "non-contaminated" areas are greater than the metals which represent "contaminated" areas. Also note that the metals in subsurface soil are within or close to background subsurface metal concentrations. Therefore, this supports the possibility that in many cases at MCB Camp Lejeune, the elevated total metals in shallow groundwater cannot be attributable to a source or to past disposal practices.

Table 6 (Total Metals in Deep Monitoring Wells)

Table 6 presents total metal concentrations in deep groundwater for each site. The data base is limited to only 8 sites. Metal concentrations in supply wells were also included for comparison purposes.

As shown on Table 6, total metals in deep groundwater are below drinking water standards with a few exceptions. Arsenic and cadmium were detected above the standards in one deep monitoring well at Site 78 (see Figure 4). Manganese was detected in deep groundwater at three sites and a few of the supply wells. Lead was detected in one supply well at 16 μ /l, which is slightly above the drinking water standard of 15 μ /l.

Elevated total metals are not widespread in deep groundwater for two possible reasons. First, most metals are not very mobile in the environment. Second, deep groundwater samples may not have significant amounts of suspended particulates due to different geologic conditions. Soils in the deeper aquifer are more compacted and consist primarily of calcareous sands, clays, and limestone fragments. Soils in the shallow aquifer are loosely compacted and consist primarily of fine-grained sands, silts, and clays. This classification may support the possibility that suspended solids are collected during sampling, thereby influencing the analysis for total metals.

Table 7 (Summary of Field Parameters in Shallow, Deep, and Supply Wells)

Table 7 provides a range of pH and specific conductivity values representative of shallow and deep groundwater. In general, lower pH values were noted more often in shallow wells than in deep wells (including the supply wells). This condition may influence the leachability and speciation of metals in groundwater.

Deep groundwater usually exhibited higher specific conductivity values. High specific conductivity values are representative of high dissolved conditions. The fact that deep groundwater generally exhibited higher specific conductivity values indicates that most of the metals, if present, are in a dissolved state. The high specific conductivity values could also indicate less suspended particulates due to the geologic conditions of the deep aquifer. The lower specific conductivity values observed in shallow wells indicates that the metals in the shallow aquifer are not in a dissolved state. This also supports the possibility that suspended particulates in the shallow aquifer are influencing the analysis of total metals.

5.0 ANALYSIS OF THE STUDY OBJECTIVES

Each of the objectives identified for this study are analyzed below based on the information collected.

<u>Objective No. 1 (Determine whether the elevated total metals in the shallow aquifer are</u> related to past disposal practices, well construction factors, sampling techniques, or suspended particulates in the samples)

Based on the analysis of information provided in Tables 1 through 7 and Appendix A, it appears that suspended particulates in groundwater samples could influence the concentration of total metals in groundwater. Well construction factors and sampling techniques are probably not a significant factor since the data base is representative of data obtained by Baker, ESE (Site 28 and 30), Roy F. Weston (ABC Cleaners), and Halliburton NUS (Site 7). No particular pattern was noted between sites which Baker obtained the samples versus sites in which other consultants obtained the data. Sampling methods were also considered. For Sites 63 and 65 for example, samples were collected with a bailer. At Sites 2 and 78, samples were collected with a low flow pump. All four sites exhibited elevated levels of total metals in groundwater samples. In addition, due to the fact that deep groundwater quality is not significantly impacted with metals indicates that well construction or sampling techniques are probably not factors related to elevated total metals in groundwater.

With respect to past disposal practices, Table 5 clearly shows that soil concentrations do not correlate with elevated total metals in groundwater. Based on this analysis, and on many of the sites previously investigated, the source of total metals in groundwater cannot be attributable to soil contamination or disposal practices in many cases. This is based on both the history of the site as well as the analytical soil results. In some cases, total metals were detected at elevated levels even when the site history did not correlate with the contaminants found. For example, Sites 2 and 21 have a history of pesticide storage and handling, and there are no known disposal areas (i.e., buried debris) within the site boundary. Nevertheless, both of these sites exhibited several metals above drinking water standards that would not be expected to be present at high concentrations based on the historical use of the site. These metals included lead, chromium, beryllium, cadmium, and manganese.

<u>Objective No. 2 (Determine whether total metals in shallow groundwater are elevated</u> <u>throughout the region or MCB Camp Lejeune)</u>

Based on groundwater data obtained from both upgradient wells and off base wells, total metals were detected above drinking water standards in shallow groundwater in areas that would not be influenced by former disposal activities at the sites. Given that some of the upgradient wells are contaminated, it is apparent that total metals in shallow groundwater are elevated in certain areas of the base outside of the influence of site-related disposal activities. However, it is unknown whether the shallow aquifer upgradient of the sites is contaminated due to other base-related activities or whether the levels in groundwater samples are also elevated due to the influence of suspended fines in the samples.

<u>Objective No. 3 (Determine whether there is a correlation between elevated total metals in</u> groundwater and metals in soil)

An evaluation of the data presented in Table 5 shows that metals in soil samples collected in areas of groundwater contamination are not elevated when compared to metals in soil samples collected in areas that did not exhibit groundwater contamination. This supports the possibility that in many cases, elevated levels of total metals in shallow groundwater are not related to the disposal history at the site. As previously mentioned, sites which did not exhibit soil contamination (when compared to background soil levels) or did not have a history of disposal indicative of metals contamination still exhibited elevated levels of total metals in groundwater. Since there is no apparent correlation between metals in soil and total metals in groundwater, then the possibility exists that the elevated total metals in groundwater are biased high due to suspended particulates.

<u>Objective No. 4 (Determine whether the concentrations of total metals in groundwater is</u> related to shallow and deep aquifer characteristics)

There is some evidence that the geologic conditions of the shallow and deep aquifers influence the amount of total metals detected in groundwater samples. The fact that the deep aquifer generally exhibited higher specific conductivity values indicates that there is more dissolved constituents in the deep aquifer when compared to the shallow aquifer. This was evident when comparing Table 1 (total metals in shallow groundwater) to Table 6 (total metals in deep groundwater). Table 6 did not indicate significant levels of total metals in deep groundwater throughout MCB Camp Lejeune.

9

The geologic conditions of the shallow aquifer would tend to result in samples that may contain suspended particulates. The suspended particulates could influence the total metals concentrations in the samples.

6.0 CONCLUSIONS

- 1. Elevated levels of total metals in the shallow aquifer are probably influenced to some degree by the geologic conditions of the site.
- 2. There is no correlation between metal levels in soil and total metals in groundwater. Therefore, elevated total metals in groundwater cannot be attributable to soil contamination of past disposal practices.
- 3. Elevated levels of total metals in the shallow aquifer may be biased high due to suspended particulates in the samples.
- 4. Dissolved metals in groundwater were generally below Federal MCLs and NC WQS and therefore, do not present a significant problem at MCB Camp Lejeune.
- 5. Total and dissolved metal concentrations in the Castle Hayne aquifer were generally below drinking water standards and therefore, do not present a significant problem at MCB Camp Lejeune.
- 6. The presence of manganese in shallow and deep groundwater may be due to naturally occurring geologic conditions.

7.0 **RECOMMENDATIONS**

- 1. Remediation of total metals in the shallow aquifer at Operable Units 1 and 5 is not recommended based on the following:
 - Elevated metals in groundwater at both operable units does not appear to be related to soil contamination or past disposal practices;
 - The distribution of total metals in groundwater is not characteristic of a plume that would be present due to a source of contamination;
 - Remediation of total metals would not be practical from an engineering or cost standpoint; and
 - Currently, there is no human or environmental exposure to shallow groundwater.
- 2. Additional background wells should be installed at all sites in order to provide a baseline for comparing on-site groundwater quality.

Tables

TABLE 1 TOTAL METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ug/L	FEDERAL MCL ug/L	Site 1 ug/l,	Site 2 ug/l.	Site 6 ug/L	Site 7 ug/L	Site 9 ug/L	Site 21 ug/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	Site 41 ug/L	Site 43 ug/L	Site 44 ug/L
Arsenic	50	50	7.2 - 57.4	2.2 - 23.6	ND - 23.3	ND - 43.4J	ND	ND - 101	ND + 116J	5.4 - 13J	6.4 - 12J	2.4 - 36.3	ND - 23.4	ND - 570
Barium	2000	2000	335 - 833	46 - 1420	ND - 1020	427 - 641	ND - 1060	ND - 647	ND - 1120	78.8 - 576	60.1 - 396	55.2 - 999	220 - 745	315-3180
Beryllium	NE	4	2.7 J - 43.4	1 - 3	ND - 7.5	ND • 10.3J	ND	ND - 8	ND - 19	ND + 1.2J	ND - 2.4	0.80 - 42.8	1.5 - 4.2	1.4 - 36.6
Cadmium	5	5	ND - 12.9	7	ND	ND	ND	ND	ND - 12	3.3J - 17.3J	ND - 10.7J	3.2 - 110	ND - 6.9	ND-32
Catcium	NA	NA	8850 - 726000	5710 - 450000	5430 - 64900	5050 - 51300	16100 - 90700	6130J - 63000J	ND - 151000	20200 - 160000	1730 - 11900	8750 - 828000	10300 - 91900	2430 - 191000
Chromium	50	100	172 - 627	11 - 117	ND - 201	47.8 • 220	ND - 214	ND • 348J	19-316	9.0J - 140	42.8 - 106J	10.5 - 244	161 - 249	126 - 895
Copper	1000	1300	44.6 - 117	3 - 23	ND - 175	17.7 - 36.4	ND - 39.7	ND - 84	ND - 52	18.8J • 75.4	15.8 - 42.5	16.3 - 1030	64.2 - 104	28.6 - 313
Lead	15	15	40.8J - 176J	2.7 - 44.8	ND - 200	23 - 37.3	ND - 127	ND - 2000J	5.1 - 89	20.3J - 234J	7.73 - 1153	4.8 - 9340	16.5 - 28.8	15.8 - 508
Manganese	50	50(1)	125 - 1720	21 - 190	ND - 362	56.9 - 220	ND - 91.3	59 - 276J	29 - 518	82.2 - 304	78.5 - 578	56.6 - 2110	72.6 • 297	88 - 1730
Mercury	1.1	2	ND - 1.2J	ND	ND46	0.2 - 0.36	ND • 1.4	ND • 2.4J	ND • 3.2	ND - 1.4J	0.88J - 0.9J	0.13 - 0.92	ND - 0.24	ND • 1.1
Nickel	100	100 .	28.5 - 426	ND	ND - 41.9	ND	ND	ND - 123	ND - 140	ND - 59.8	17.1J - 52.6J	28.8 - 137	20.5 - 143	21.9 - 486
Sodium	NA	NA	9090 - 19000	ND - 103000	1110 - 68700	7040 - 156000	1390 - 4170	7950 - 15700	5230 - 19200	9480 - 74700	5320 - 8100	2080 - 40200	9160 - 22100	4060 - 12600
Vanadium	NE	NE	214 - 640	9 - 184	ND - 330	37.8 - 423	ND - 175	ND - 419	ND - 408	6.1 - 164	57 - 101	20.4 - 244	122 - 233	184 - 759
Zinc	2100	5000 <u>(1)</u>	ND-1110	6 - 146	ND - 1620	83.6 - 133	ND-118	27] - 487J	20 - 650	ND	79.2 - 104	25.7 - 5180	19 J - 661 J	87.3 - 2800J

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property #1 ug/L	Offsite Property #2 ug/L
Arsenic	ND	ND - 23.4	ND - 308	2.9 - 29.0	ND - 405J	ND - 67.8	ND - 12	10.3 - 160	ND
Barium	18 - 51.3	56.1 - 5410	105 - 638	46.5 - 850	ND - 1250	ND - 540	35 - 220	ND - 468	ND
Beryllium	ND	ND - 3.1	ND	1.3 - 10.6	ND - 19	ND	NA	ND - 8.5	ND
Cadmium	2.2 - 3.3	ND	ND	2.4 - 11.4	ND - 21	ND	NA	ND	ND
Calcium	30600 - 115000	2830 - 24300	33300 - 181000	2010 - 38700	ND - 642000	6580 - 60800	790 - 16000	ND - 22800	ND - 5200
Chromium	5.8 - 17.5	4.4 - 134	50.1 - 364	15.1 - 159	ND - 858J	ND - 174	ND • 57	52.8 - 636	ND - 94
Copper	3.1 - 13.5	10.7 - 126	28.2 - 127	16.2 - 70.8	ND - 699	ND - 29.3	ND • 89	ND - 140	ND
Lead	ND	4.3 J - 369	19.1 - 132	7.8 - 188	ND - 360J	ND - 89	ND - 10	12.3 - 345	6.3 - 62.3
Manganese	38.1 - 585	50.3 - 1020	56.2 - 474	13.0 - 912	26 - 714	26.9 - 283	4 • 44	56 - 973	ND - 60,1
Mercury	0.04 - 0.09	ND - 0.20	ND-0.29	0.10 - 0.94	ND - 1.5	ND - 0.66	NA	ND	ND
Nickel	ND	19.8 - 54.2	19.4 - 84.3	13.6 - 99.8	ND - 234	ND - 34.6	ND - 77	40.2 - 380	ND
Sodium	5750 - 8760	3150 - 7100	3850 - 11700	4790 - 41300	ND - 42500	5670 - 36500	5800 - 33000	ND - 9390	ND • 7630
Vanadium	3.4 - 12.8	7.9 - 163	59.8 - 433	17.3 - 210	ND - 1700	ND - 256	ND - 45	70 - 739	ND - 64.7
Zinc	ND - 30.3	58.5J - 1110J	148J - 406J	36.2 - 12100	6J - 967J	ND - 204	14 - 220	ND - 736	ND - 40.8

NOTES: J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL. NE - Not established.

NA . Not analyzed.

ND . Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLELXLS /Page 1 of 1

Well			2G'	W03	2G	W06	2G'	2GW08		W09
Date	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994	5/1993	3/1994
Chromium	18	ND	11	ND	15	ND	ND	ND	25	83
Lead	15.5 J	ND	3.5 J	ND	6.7 J	ND	ND	3.4	27.2 J	23.6
Manganese	55	47	21	ND	79	140	53	415	290	747

TABLE 2
COMPARISON OF REPEAT SAMPLING OF SHALLOW WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

Well	78G	W05	78G	W08	78G	W15	78G	W16	780	W19
Date	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994	1/1991	4/1994
Chromium	ND	17 J	91.8	491 J	21.4	215 J	209	353 J	13.8	ND
Lead	13.6	13.1 J	54.1	131 J	16.6	53	100	224	31.7	8.3
Manganese	162	161 J	46.5	213 J	18.3	115	98.3	150	79	26

NOTES: J - Value is estimated.. ND - Not detected.

TABLE2.XLS Page 1 of 1

TABLE 3 DISSOLVED METALS BY SITE SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Site Number Units	NCWQS ng/L	FEDERAL MCL wg/L	Site 1 ug/L	Site 2 ug/L	SHe 6 ug/L	Site 7 ng/L	Site 9 ug/L,	Site 21 ng/L	Site 24 ug/L	Site 28 ug/L	Site 30 ug/L	Stie 41 ng/L	Site 43 ug/L	Stie 44 ug/L
Amenic	50	50	NA	2.2 - 7.1	ND	NA	ND	ND - 10.6	ND - 16.3	NA	NA	2.2 - 4.7	NA	NA
Barium	2000	2000	NA	25 - 149	ND	NA	ND	ND	ND	NA	NA	12.4 - 451	NA	NA
Beryllium	NE	4	NA	- 1	ND	NA	ND	ND	ND	NA	NA	0.80 - 3.2	NA	NA
Cadmium	5	5	NA	ND	ND	NA	ND	ND-5	ND	NA	NA	3.2 • 4.2	NA	NA
Calcium	NA .	NA	• NA	5800 - 441000	6230 - 57400	NA	15800 - 82400	35900	ND - 113000	NA	NA	4710 - 138000	NA	NA
Chromium	50	100	NA	10	ND	NA	ND	ND	ND	NA	NA	8.3 - 9.6	NA	NA
Copper	1000	1300	NA	2-9	ND	NA	ND	ND	ND	NA	NA	16.3 • 23.9	NA	NA
Lead	15	15	NA	2.1	ND	NA	ND	ND - 94	ND	NA	NA	1.0	NA	NA
Manganese	50	50 (1)	NA	17 - 129	ND - 92.7	NA	ND	40 - 134	ND - 320	NA	NA	7.1 - 521	NA	NA
Mercury	1.1	2	NA	ND	ND	NA	ND	ND	ND - 0.5	NA	NA	0.13 - 0.20	NA	NA
Nickel	100	100	NA	ND	ND	NA	ND	ND	ND - 57	NA	NA	28.8 - 31.2	NA	NA
Sodium	NA	NA	NA	ND - 103000	1420 - 70500	NA	1280 - 3860	16200	ND - 183000	NA	NA.	2500 - 34200	NA	NA
Vanadium	NE	NE	NA	43	ND	NA	ND	ND	ND	NA	NA	20.4	NA	NA
Zinc	2100	5000 (1)	NA	8 - 35	ND - 350	NA	ND	6B - 50	ND - 437	NA	NA	10.6 - 125	NA	NA

Site Number Units	Site 48 ug/L	Site 63 ug/L	Site 65 ug/L	Site 69 ug/L	Site 78 · ug/L	Site 82 ug/L	ABC Cleaners ug/L	Offsite Property#1 ug/L	Offsite Property #2 ug/L
Arsenic	ND	NA	NA	2.9	ND • 21.6	ND	NA	ND - 18.8	ND
Barium	16.8 - 27.6	NA	NA	13.7 - 35.8	ND	ND	NA	ND	ND
Beryllium	ND	NA	NA	1.3	ND	ND	NA	ND	ND
Cadmium	ND • 3.1	NA	NA	2.4	ND	ND	NA	ND	ND
Calcium	72600 - 80700	NA	NA	764 - 10600	ND - 296000	15200 - 58500	NA	ND - 7710	ND
Chromium	ND	NA	NA	7.2	ND - 59	ND	NA	ND - 30.0	ND
Copper	2.6 - 7.6	NA	NA	16.2	ND - 121	ND	NA	ND - 10.7	ND
Lead	ND	NA	NA	1	ND - 17.2	ND	NA	ND - 15.8	ND
Manganése	39.7 - 539	NA	NA	8.5 - 139	ND - 152	21 - 127	NA	ND - 63.8	ND - 21.3
Mercury	0.05 - 0.09	NA	NA	0.1	ND - 0.6	ND	NA	ND	ND
Nickel	ND	NA	NA	13.6	ND	ND	NA	ND	ND
Sodium	6430 - 8920	NA	NA	5170 - 41100	ND • 42200	5980 - 36000	NA	ND - 9540	ND - 6750
Vanadium	ND	NA	NA	16.6	ND	ND	NA	ND	ND
Zinc	ND	NA	NA	7.0 - 7670	ND - 58	ND - 119	NA	ND - 468	ND - 222

i

1

- NOTES: J - Value is estimated. JB - Value is estimated below the CRDL, but greater than the IDL. NE - Not established, NA - Not analyzed. ND - Not detected. NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level (1) - Secondary MCL

TABLE3.XLS / Page 1 of 1

TABLE 4 SUMMARY OF TOTAL METALS IN UPGRADIENT WELLS SHALLOW MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

Well Number	NCWQ8	FEDERAL MCL	Upgradient of Site 1 1GW06	Upgradient of Site 2 2GW09	Upgradient of Site 6 6BP6S	Upgradient of Site 7 7GW03	Upgradient of Site 9 9GW4S	Upgradient of Sites 21 and 78 78GW26	Upgradient of Site 24 24GW07	Upgradient of Site 28 28GW04	Upgradient of Site 30	Upgradient of Site 41 41GW05	Upgradient of Site 43	Upgradient of Site 44
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L,	ug/L	ug/L	ug/L		ug/L		
Arsenic	50	50	17.8 J	12.9	ND	ND	ND	ND	3.7 J	7,4 J		13.1		
Barium	2000	2000	548	328	257	428	71.3	ND	ND	576	tes –	55.7	- ti	- <u>s</u> -
Beryllium	NE	4	3.2 J	3	ND	ND	ND	ND	ND	9.3 J	- Si	1.6	l is –	- 8 -
Cadmium	5	5	ND	ND	ND	ND	ND	not reported	ND	3.3 J	5	10		
Chromium	50	100	193	75	198	124	ND	13	37	122	- × -	54,4	- à -	
Copper	1000	1300	64.8	25	35.6	36.4	ND	ND	ND	20.7 J		27	1	
Lead	15	15	78.8 J	27.2	64.4	30.3 J	ND	9	11.4	22.4 J	iii	23.7		
Manganese	50	50 (1)	202	747	84.5	56.9 J	ND	ND	39	206	Ē	203	E -	- 8 -
Mercury	1.1	2	1.6 J	ND	ND	0.36	ND	ND	ND	ND	- Bg	0.16	- 6 -	- <u>8</u> -
Nickel	100	100	51.6	ND	ND	ND	ND	ND	ND	59.8	Ē	38	- 5 -	- 5 -
Vanadium	NE	NE	214	86	209	152	ND	149	64	85.3	<u> </u>	38.1	 2	_ 2 _
Zinc	2100	5000 (1)	ND	103	56.6	86.4 J	ND	68.1	41	ND	····· // ····	173	£,	- 4 -

Well Number	Upgradient of Site 48 48GW1	Upgradient of Site 63	Upgradient of Site 65	Upgradient of Site 69 69GW07	Upgradient of Site 78 9GW04	Upgradient of Site 82 6MW3S	Upgradient of ABC Cleaners MW-S01	Upgradient of Offsite Property #1	Upgradient of Offsite Property #2
Units	ug/L			ug/L	ug/L	ug/L	ug/L		
Arsenic	ND			2.9	ND	ND	ND		
Barium	29,4 J	<u> </u>	Sites	46.5	ND	ND	35	<u> </u>	Sites
Beryllium	ND	— Site	- š	1.3	ND	ND	NA	- Sit -	l is –
Cadmium	2.5 J			2.4	ND	ND	NA	3	5
Chromium	ND		_ ≱ _	15.8	ND	ND	ND	- š -	Ň Ť
Copper	ND		iei	16.2	ND	ND	ND		1
Lead	ND	li ii	lie –	7.8	ND	ND	3		dient
Manganese	70.6			13	ND	ND	10		
Mercury	ND		- ng -	0.1	ND	ND	NA		
Nickel	ND	n	5	13.6	ND	ND	ND		Upgri
Vanadium	3.4 J	- ° -	%	17.3	ND	ND	9	[%]	2
Zine	ND	~ ~ ~	~ ~ ~	36.2	ND	ND	23	- 4 -	

NOTES: J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL. NE - Not established, NA - Not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB. CAMP LEJEUNE. NORTH CAROLINA

	Camp Lejeune Background		Site 1		Site 2		Site 6		Site 7		Site 9		Site 21
	Subsurface Soll Data	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number		-		2GW07	2GW09	6GW18	6GW15	7GW03	7GW02	9GW5	9GW1	21GW03	21GW02
Soll Sample Number				2-GW07-01	2 - GW09-02	6-GW18-0303	6-GW15-03	GW03-002	GW02-7595	9-GW5-03	9-SB35-03	21-GW03	21-GW02
Arsenic	0.03 - 0.47	NA	NA	1.7 J	ND	ND	ND	1.5	ND	ND	ND	ND	0.55 J
Barium	2-11	NA	NA	12.5 J	ND	ND	ND	6.6	71	ND	ND	ND	4.4 3
Beryllium	0.03 - 0.23	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.17 - 1.2	NA	NA	ND	ND	ND	ND	1.3	4.5	ND	ND	ND	ND
Chromium	2.9	NA	NA	10.9 J	4.6	ND	1.6	5.2	6	ND	261	15.2	3.2.3
Copper	0.47 - 2	NA	NA	0.97 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	1 - 12	NA	NA .	8J	4.3	3.3 J	12	2,5	34,4	1.6	83	7.1	691
Manganese	0.40 - 8	NA	NA	4.3 J	4.1	ND	1.8 B	3	11.5	ND	3.7 J	9.8	3.4.7
Mercury	0.01 - 0.11	NA	NA	0.3 J	ND	ND	ND	10.13	0.48	ND	ND	ND	ND
Nickel	0.70 - 5.0	NA	NA	ND	ND	ND	ND	3.4	11.8	ND	ND	ND	ND
Vanadium	0.75 - 13	NA	NA	13.8 J	ND	ND	2.9 B	5.5	4.5	ND	ND	15.5	4.4 J
Zinc	0.40 - 12	NA	NA	ND	ND	ND	ND	1.3	ND	ND	6.1 J	5.7	31

NOTES:

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected,

NCWQS - North Carolina Water Quality Standard MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB. CAMP LEJEUNE, NORTH CAROLINA

		Site 24		Site 28		Site 30	Sit	e 41	5	Site 43	SI	te 44
	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	24GW10	24GW02	-		-		41GW04	41-GW11	43GW01	43GW02	44GW02	44GW01
Soil Sample Number	24-GW10	24-BDA-8B09	1	-	-		41-GW04-DW	41-GW11-01	43-GW01-00	43-GW02-00	44-GW02-035	
Arsenic	ND	ND	NA	NA	NA	NA	0.51	1.6	ND	ND	ND	1.7
Barium	ND	ND	NA	NA	NA	NA	9.4	22.6	ND	ND	ND	17.9
Beryllium	ND	ND	NA	NA	NA	NA	0.18	0.18	ND	ND	ND	ND
Cadmium	ND	ND	NA	NA	NA	NA	0.73	6.73	8.3	ND	ND	ND
Chromium	11.2	93	NA	NA	NA	NA	3.6	112	8.3	6.7	361	10.4
Copper	ND	ND	NA	NA	NA	NA	3.7	22.5	3.4	ND	6.2 J	25.4 J
Lead	4.6 J	621	NA	NA	NA	NA	4.8	110	9.8	6.1	55	10.7
Manganese	4.7	8.4.1	NA	NA	NA	NA	3.7	78.9	31.2	8.2	3.5	20.4
Mercury	ND	ND	NA	NA	NA	NA	0.06	0.31	ND	ND	ND	ND
Nickel	ND	ND	NA	NA	NA	NA	6.6	6.6	7.6	7.3	3.1	3.4
Vanadium	18.4	10	NA	NA	NA	NA	6.8	9.3	7.2	5.8	5	14.7
Zinc	ND	7.8	NA	NA	NA	NA	7.7	130	20.1	3	3.2	34.9

NOTES:

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected. NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Lovel

(1) - Secondary MCL

TABLES.XLS / Page 2 of 4

TABLE 5
COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS
MCB, CAMP LEJEUNE, NORTH CAROLINA

	8	iite 48	Site 63		1	Site 65	8	Site 69		Site 78		Site 82
	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"	"Clean"	"Contaminated"
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Well Number	48-GW01	48-GW03	63MW03	63MW02	65MW03	65MW02	69-GW11	69-GW03	78GW34	78GW24-1	6-GW28	82MW3
Soil Sample Number	48-GW1A-01	48-C3-03	63-MW03-04	63-MW02-06	65-MW03-11	65-MW02-06	69-GW11-04	69-CSA-SB23-00	78-GW34	78-B903-SB03	6-GW28-09	6-GW27D-06
Amenic	1.3	0.77 J	ND	DИ	ND	13	0.68	0.63	ND	ND	0.31	15.9
Barium	21.1	15	ND	ND	3.4	6.8	5.6	3	ND	ND	ND	ND
Beryllium	0.2	0.19	ND	ND	DND	ND	0.3	0.28	ND	ND	ND	ND
Cadmium	1.4	1.8 J	ND	ND	NA	NA	0.56	0.52	ND	ND	ND	ND
Chromium	18.2	18.6	7.7	ND	3,9	57	6.8	12	18.5	9.3	2.6	3
Copper	3.5	3.8	ND	· ND	1.5	3.1	3,8	3.5	3.4 B	ND	ND	ND 201
Lend	32.3	14.3	4.2	2.6	12	37	4.3	11	4.5 J	2.6 J	2.7	4.3
Manganese	411	7	4.9	18.8	3.5	6.9	4	12	92	NB	ND	ND
Mercury	ND	ND	ND	ND	NA	NA	0.06	0.05	ND	ND	ND	ND
Nickel	2.2	1.9 J	ND	ND	ND	ND	3.2	3	ND	ND	ND	ND
Vanadium	28.3	20.8 J	ND	ND	4.4	3	4.4	3.6	18.7	19.2	ND	ND
Zinc	ND	ND	ND	ND	2.7	5	3.2	1.5	7.9	ND	ND	ND

NOTES:

i

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.
 JB - Value is estimated below the CRDL, but greater than the IDL.
 NA - No available wells to compare OR compound was not analyzed.
 ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

۰.

6.6 3

TABLE 5 COMPARISON OF INORGANIC SUBSURFACE SOIL CONCENTRATIONS IN "CLEAN" AND "CONTAMINATED" WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	A	SC Cleaners	Offi	te Property #1	Offsi	te Property #2
Units	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg	"Clean" mg/kg	"Contaminated" mg/kg
Well Number	-		-	-	-	-
Soil Sample Number	-	**		-	-	
Amenic	NA	NA	NA	NA	NA	NA
Barium	NA	NA	NA	NA	NA	NA
Beryllium	NA .	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA
Manganese	NA	NA	NA	NA	NA	NA
Mercury	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA
Vanadium	NA	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA

NOTES:

Shaded area indicates inorganic which exceeded a MCL and/or NCWQS in groundwater sample.

J - Value is estimated.

JB - Value is estimated below the CRDL, but greater than the IDL.

NA - No available wells to compare OR compound was not analyzed.

ND - Not detected.

NCWQS - North Carolina Water Quality Standard

MCL - Maximum Contaminant Level

(1) - Secondary MCL

TABLES.XLS / Page 4 of 4

TABLE 6 TOTAL METALS BY SITE DEEP MONITORING WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	Site 1	Site 2	Site 6	Sile 7	Site 9	Site 21	Site 24	Site 28	Site 30	Site 41	Site 43	Site 44	Site 48	Site 63	Site 65	SHe 69	Site 78	Site 82	ABC Cleaners	Base Supply Wells (1)
Arrenic		ND	ND		ND					2.2 - 9.6						2.2 - 3.5	2-118J	ND	ND - 14	ND
Barium		1420	ND	L _	ND			L _		22.6 - 186		L			E _	42.3 - 58.0	ND - 547	ND	4-36	ND
Beryilium		ND	ND		ND					3.2			E]	L I	E I	0.80 - 0.89	ND	ND	NA	NA
Cadmium	- 515	ND	ND		ND	ells	- Els	ells	- els -	4.2 - 4.7	- Is -	- er -	- 6 -	- 1 -	- els -	3.2	ND - 21	ND	NA	ND
Chromium	- Ă -	16	ND	L 🛎 _	ND	M -	<u> </u>	_ × _	L Å _	9.6 - 40.5	Lš.	Lă.	Lš.	L š _	L 🕺 _	8.3 - 20.7	ND - 10	ND	ND-32	ND
Copper	- 6 -	ND	ND		ND	- 8 -	- .	- 8 -	- e -	23.9	Le-	8		Ľ ġ .	L a l	16.3	ND	ND	ND - 41	ND - 130
Lead	- å -	ND	ND	ļā _	ND	De -	Lå.		L o _	1.0 - 11.1		Lā_		L ð .	Ľð	3.1 - 6.8	ND	ND	ND-10	ND - 16
Manganese	- % -	ND	ND - 33.5		ND	- 2 -		- 9 -	- 9-	16.9 - 101	L		[@]		L J _	53.7 - 114	ND • 591	ND - 21.6	ND - 45	10 - 120
Mercury		ND	ND		ND	- 4				0.15 - 0.17	L~ _					0.16 - 0.17	ND-0.3	ND	NA	ND
Nickel		ND	ND		ND		L	L _		31.2		L _	Ľ.	Ľ	L _	28.8	ND	ND	ND-14	NA
Vanadium	_ · _	ND	ND		ND					20.4 • 49.8			Ľ.		Ľ	20,4	ND - 24 J	ND	ND - 15	NA
Zinc		ND	ND		ND					17.8 - 83.8						31.1 - 48.7	ND - 181 J	· ND	58-390	ND - 120

NOTES:

.

J - Value is estimated..

NA - Not analyzed, ND - Not detected.

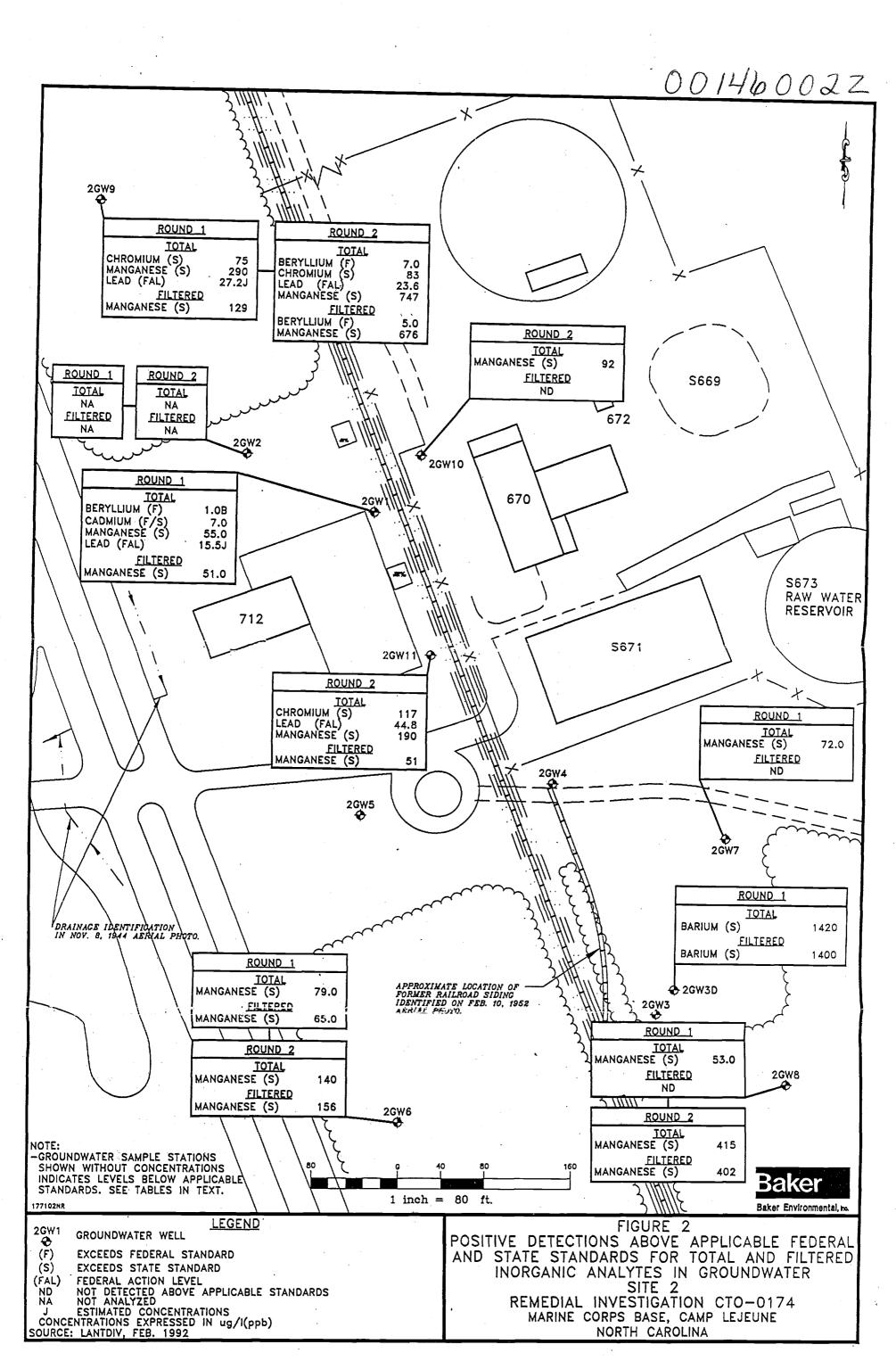
(1) - Range is based on 67 supply wells located throughout MCB, Camp Lejeune, NC.

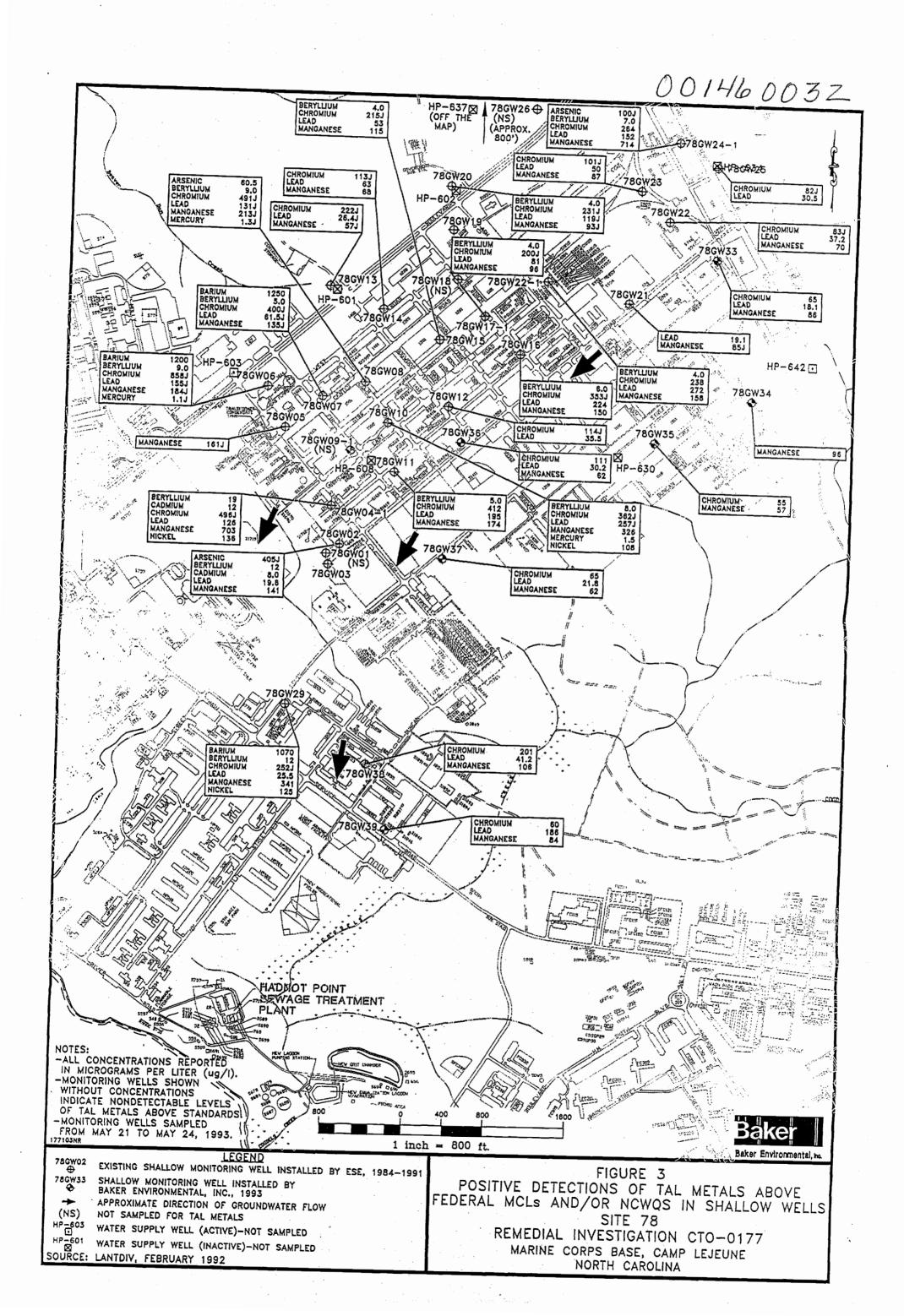
TABLE6.XLS / Page 1 of 1

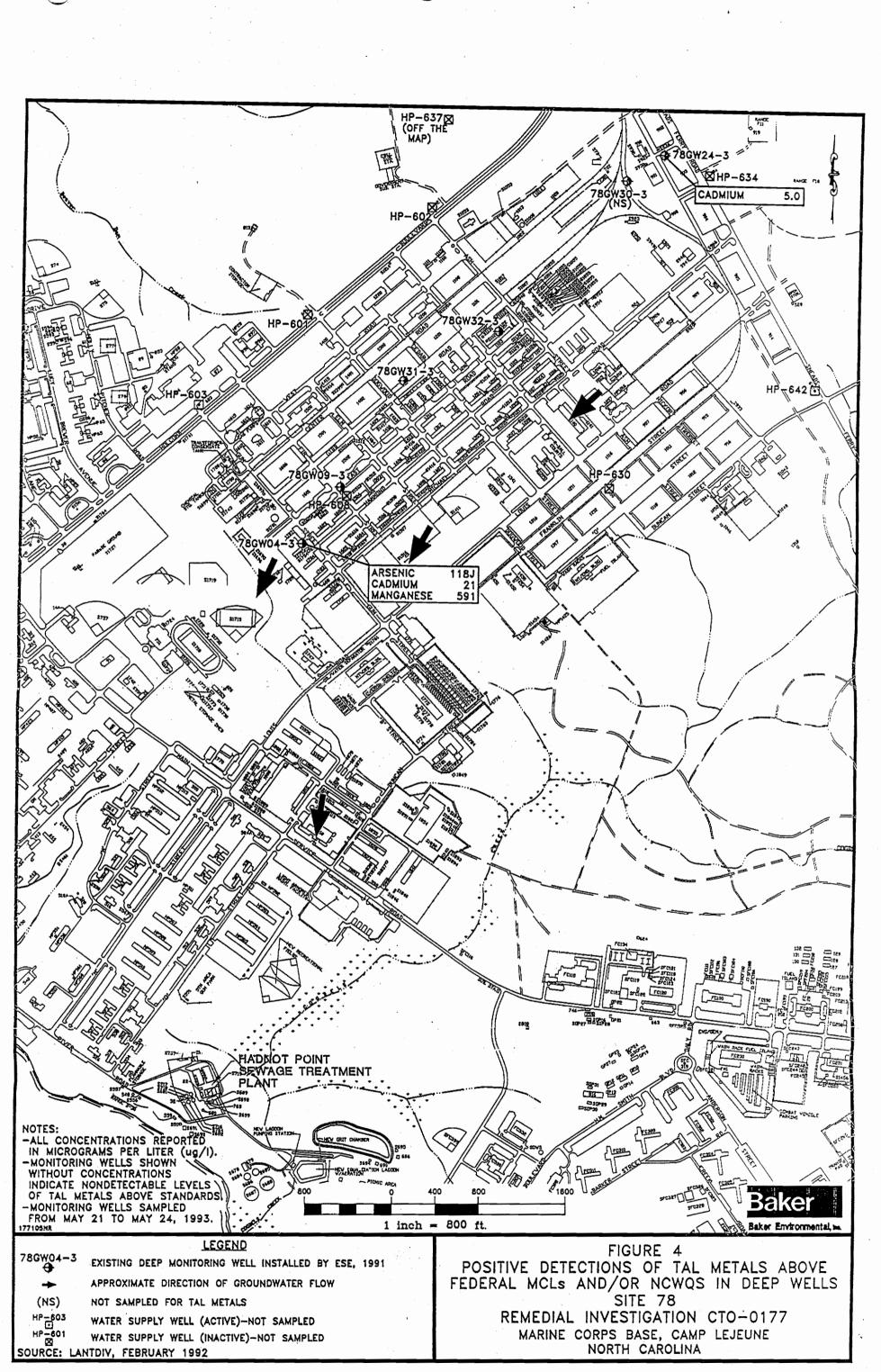
TABLE 7 SUMMARY OF FIELD PARAMETERS IN SHALLOW, DEEP, AND SUPPLY WELLS MCB, CAMP LEJEUNE, NORTH CAROLINA

	Shallov	v Wells	Deep	Wells	Supply Wells		
	Range (1)	Average Maximum	Range (2)	Average Maximum	Range (3)	Average Maximum	
p11 (standard units)	4.5 - 7.28	6.08	7.52 - 11.34	8.88	6.91 - 7.45	7.32	
Specific Conductivity (micromhos/cm)	40 - 580	267	149 - 525	350	212 - 511	353	

(1) - Based on data from 11 sites.


(2) - Based on data from 6 sites.


(3) - Based on data from 9 supply wells.


Figures

A SAM

00146004Z

Appendix A Data Summary Tables for Sites 2 and 78

	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF	FREQUENCY
	NONDETECTED	NONDETECTED	DETECTED	DETECTED	MAXIMUM	OF
· · · ·	UG/L	UG/L	UG/L	UG/L	DETECTED	DETECTION
ALUMINUM	NA	NA	68 J	542000 J	78-GW06-01	59 / 59
ANTIMONY	3 U	20 U	3.3 B	169 J	78-GW02-01	7 / 33
ARSENIC	2 U	10 U	2.3 J	405 J	78-GW02-01	44 / 48
BARIUM	NA	NA	17 B	1250	78-GW07-01	59 / 59
BERYLLIUM	1 U	4 U	1 B	19	24-GW02-01	52 / 59
CADMIUM	5 U	25 U	5	21	78-GW04-3-01	9 / 59
CALCIUM	NA	. NA	2420 B	642000	78-GW04-1-01	59 / 59
CHROMIUM	10 U	50 U	10	858 J	78-GW06-01	46 / 59
COBALT	8 U	8 U	8 B	170	78-GW22-2-01	25 / 59
COPPER	2 U	2 U	3 B	699	78-GW39-01	58 / 59
IRON	NA	NA	32 B	523000	78-GW04-3-01	59 / 59
LEAD	1.8 U	4.9 U	2.9 B	2000 J	21-GW0B-01	50 / 59
MAGNESIUM	NA	NA	88 B	37100	24-GW03-01	59 / 59
MANGANESE	2 U	2 U	2 B	714	78-GW24-1-01	57 / 59
MERCURY	0.2 U	0.2 U	0.23 J	3.2	24-GW06-01	24 / 52
NICKEL	20 U	20 U	20 B	234	78-GW22-2-01	31 / 59
POTASSIUM	NA	NA	982 B	67300	78-GW32-3-01	59 / 59
SELENIUM	1 U	5 U	1.1 J	99.5 J	78-GW32-2-01	41 / 54
SILVER	3 U	15 U	5 J	5 J	78-GW09-3-01	1 / 59
SODIUM	NA	NA	2450 B	42500	78-GW32-3-01	59 / 59
THALLIUM	1 U	1 U	1 B	7.3 J	78-GW32-2-01	16 / 59
VANADIUM	4 U	4 U	4 J	1700	78-GW08-01	55 / 59
ZINC	6 U	6 U	6 J	967 J	78-GW22-2-01	57 / 59
CYANIDE	10 U	10 U	ND	ND	ND	0 / 54

DF.XLS

i.

	SAMPLE NO.	21-GW01-01	21-GW02-01	21-GW03-01	21-GW04-01	21-GW0A-01	21-GW0B-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		4910 J	319000 J	4820 J	20100 J	16900 J	118000 J
ANTIMONY		7 UJ	7 U	7 U	7 U	7 R	7 U
ARSENIC		15	10	2 U	11.8	45.2 J	30.4
BARIUM		32 B	647	51 B	119 B	100 B	386
BERYLLIUM		1 B	5	1 B	1 B	1 B	6
CADMIUM		5 U	10 U	5 U	5 U	5 U	10 U
CALCIUM		63000 J	24100 J	6130 J	21700 J	23800	6250 J
CHROMIUM		10 UJ	348 J	10 UJ	33 J	21 J	192 J
COBALT		8 U	18 B	8 U	10 B	8 U	36 B
COPPER		4 B	79	7 B	28	24 B	38
IRON		9920 J	122000 J	13400 J	24900 J	38900 J	72900 J
LEAD		1.8 UJ	214 J	4.9 UJ	33 J	29	· 2000 J
MAGNESIUM		5070	15400	4550 B	5490	4850 B	11600
MANGANESE		64 J	179 J	134 J	193 J	59	276 J
MERCURY		0.2 R	2.4 J	0.2 R	0.2 R	0.2 U	0.2 R
NICKEL		20 U	86	20 U.	20 U	20 U	60
POTASSIUM		2390 B	10500	2240 B	3800 B	2360 B	9520
SELENIUM		1 U	11 J	1 U	1 U	1 UJ	3.7 J
SILVER		3 U	3 U	3 U	3 U	3 UJ	3 U
SODIUM		15700	12600	7950	14400	12600	14400
THALLIUM		1 U	រ ឃ	1 U	1 UJ	1 UJ	1 U
VANADIUM		30 B	281	11 B	42 B	48 B	243
ZINC		65 J	136 J	27 J	57 J	41 J	175 J
CYANIDE		10 U					

MP.XLS

	SAMPLE NO.	21-GW0C-01	24-GW01-01	24-GW02-01	24-GW03-01	24-GW04-01	24-GW06-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		209000 J	262000	93700	50200	58900	19800
ANTIMONY		7 U	3 U	3 UJ	3 U	4.6 B	3.5 B
ARSENIC		101	· 10 UJ	2.3 J	4.7 J	116 J	10.1 J
BARIUM		467	380	1120	480	290	159 B
BERYLLIUM		8	3 B	19	5	2 B	9
CADMIUM		10 U	5 U	12	5 U	5 U	5
CALCIUM		35200 J	4120 B	2420 B	124000	65600	151000
CHROMIUM		291 J	296	316	110	153	78
COBALT		60	8 U	41 B	66	8 U	35 B
COPPER		84	49	52	22 B	31	15 B
IRON		106000 J	58600	395000	16300	70500	69500
LEAD		92.5 J	89	17.9	21.6	23.6	7.4
MAGNESIUM		16300	12200	7240	37100	7690	4320 B
MANGANESE		273 J	117	518	393	66	431
MERCURY		0.23 J	0.23	2.6	0.2 U	0.2 U	3.2
NICKEL		123	38 B	140	85	20 U	93
POTASSIUM		11800	12000	7550	15400	6130	3370 B
SELENIUM		4.3 B	1.3 J	1.1 J	16.2 J	4.3 J	1 UJ
SILVER		3 U	3 UJ	15 UJ	3 UJ	3 UJ	3 UJ
SODIUM		15200	6030	11600	19200	5230	7280
THALLIUM		1 U	1 U	1 U	2.4 B	iU	1 B
VANADIUM		419	304	408	· 92	202	83
ZINC		487 J	118	461	650	80	489
CYANIDE		10 U					

Page 11

'n.

	SAMPLE NO.	24-GW07-01	24-GW08-01	24-GW09-01	24-GW10-01	78-GW02-01	78-GW03-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		36000	61100	12800	23300	29200 J	23900 J
ANTIMONY		3 U	3 U	3.3 B	5.7 B	169 J	38.5 J
ARSENIC		3.7 J	8 J	4.3 J	2.5 J	405 J	5.7 J
BARIUM		85 B	112 B	164 B	59 B	109 B	36 B
BERYLLIUM		1 B	2 B	1 B	1 U	12	2 B
CADMIUM		5 U	5 U	5 U	5 U	8	5 U
CALCIUM		4960 B	27000	9530	3820 B	37000	32900
CHROMIUM		37	85	19	21	18 J	10 UJ
COBALT		8 U	8 U	11 B	8 U	8 U	8 U
COPPER	•	19 B	24 B	11 B	13 B	20 B	8 B
IRON		13700	27500	13100	7010	427000 J	5020 J
LEAD		11.4	23.8	5.1	7.3	19.6	3.4
MAGNESIUM		2670 B	5050	7630	1760 B	3650 B	2210 B
MANGANESE		39	47	180	29	141	27
MERCURY		0.2 U					
NICKEL		20 U					
POTASSIUM		3870 B	5580	4280 B	2620 B	2770 B	1320 B
SELENIUM		2.1 J	1.9 J	2.6 J	1 UJ	19.8 J	2.4 J
SILVER		3 UJ	3 UJ	3 UJ	3 UJ	15 UJ	3 UJ
SODIUM		6520	6550	6010	6650	5120	4270 B
THALLIUM		1 U	1 U	1 U	1 U	1 UJ	1 UJ
VANADIUM		64	129	26 B	34 B	1660	50
ZINC		41	47	50	20	58 J	∘ 12 J
CYANIDE		10 U	10 U 🔌				

• .

101 AS

4

	SAMPLE NO.	78-GW04-1-01	78-GW04-2-01	78-GW04-3-01	78-GW05-01	78-GW06-01	78-GW07-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		297000 J	286	115 B	23000 J	542000 J	207000 J
ANTIMONY		7 R	7 R	7 R	7 U	7 U	7 U
ARSENIC		18.6 J	2 R	118 J	5.2 J	26 B	16.2
BARIUM		728	519	547	54 B	1200	1250
BERYLLIUM		19	1 B	1 B	2 B	9	5
CADMIUM		12	5 U	21	5 U	5 U	5 U
CALCIUM		642000	170000	105000	90200 J	7180 J	18700 J
CHROMIUM		496 J	10 U	50 U	17 J	858 J	400 J
COBALT		28 B	8 U	8 U	8 U	11 B	20 B
COPPER		87	4 B	7 B	8 B	127	53
IRON		267000 J	32 B	523000	14900 J	142000 J	96700 J
LEAD		126	2 U	2 U	13.1 J	155 J	61.5 J
MAGNESIUM		25500	88 B	3210 B	12700	24000	20000
MANGANESE		703	51	591	161 J	184 J	135 J
MERCURY		0.75	0.2 U	0.3	0.2 R	1.1 J	0.44 J
NICKEL		136	20 B	20 U	20 U	86	54
POTASSIUM		18800	21800	11300	4770 B	25600	13200
SELENIUM		9 1	1 R	1 R	6.4	5.5 B	9.1
SILVER		6 UJ	3 U	15 U	3 U	3 U	3 U
SODIUM		8870	11500	9290	23900	5090	9260
THALLIUM		1.2 J	1 U	1 U	1 UJ	1.1 B	1 UJ
VANADIUM		591	4 UJ	24 J	28 B	811	406
ZINC		373 J	7 J	79 J	32 J	223 J	158 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

Pag/

11

4

	SAMPLE NO.	78-GW08-01 UG/L	78-GW09-2-01 UG/L	78-GW09-3-01 UG/L	78-GW10-01 UG/L	78-GW11-01 UG/L	78-GW12-01 UG/L
	UNITS						
ALUMIŃUM		483000 J	68 J	2710 J	404000 J	332000	108000 J
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		60.5	2 R	2 R	43 J	10 R	9.6 J
BARIUM		740	27 B	41 B	582	631	155 B
BERYLLIUM		9	1 U	1 B	8	5	2 B
CADMIUM		25 U	5 U	5 U	10 U	25 U	10 U
CALCIUM		28200 J	114000	99100	54400	9130	31200
CHROMIUM		491 J	10 UJ	10 UJ	362 J	412	114 J
COBALT		29 B	8 U	8 U	31 B	8 U	8 U
COPPER		86	4 B	4 B	91	84	30
IRON		138000 J	955 J	t ee	157000 J	120000	26400 J
LEAD		131 J	2 U	2 U	257	195	35.5
MAGNESIUM		18500	2550 B	249 B	17400	15400	7220
MANGANESE		213 J	19	2 U	326	174	47
MERCURY		1.3 J	0.2 U	0.2 U	1.5	0.75	0.2 U
NICKEL		89	20 U	20 U	108	79	20 U
POTASSIUM		14700	1220 B	7820	15800	13000	6090
SELENIUM		25.3	1 UJ	1 UJ	18 J	12 J	3.6 J
SILVER		3 U	3 UJ	5 J	3 UJ	3 U	3 UJ
SODIUM		4710 B	5820	7280	3340 B	3490 B	5420
THALLIUM		1.3 J	1 UJ	1 UJ	1 UJ	1 U	1 UJ
VANADIUM		1700	4 U	9 B	499	526	145
ZINC		200 J	11 J	181 J	217 J	120 J	64 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

'MP.XLS

	SAMPLE NO. UNITS	78-GW13-01 UG/L	78-GW14-01 UG/L	78-GW15-01 UG/L	78-GW16-01 UG/L	78-GW17-1-01 UG/L	78-GW17-2-01 UG/L
ALUMINUM		61800 J	103000 J	205000 J	341000 J	168000 J	541 J
ANTIMONY		7 U	7 R	7 R	7 R	7 R	7 R
ARSENIC		38.3	18.4 J	4 R	19 J	11.6 J	2 R
BARIUM		236	321	469	511	261	57 B
BERYLLIUM		3 B	1 B	4 B	6	4 B	1 B
CADMIUM		5 U	10 U	5 U	5 U	10 U	5 U
CALCIUM		4040 J	5300	29100	62700	86900	144000
CHROMIUM		222 J	113 J	215 J	353 J	200 J	10 UJ
COBALT		20 B	8 U	9 B	13 B	9 B	8 U
COPPER		18 B	33	49	80	40	5 B
IRON		61800 J	49600 J	43300 J	80900 J	48700 J	2120 J
LEAD		26.4 J	63	53	224	81	5.9
MAGNESIUM		11800	10600	13400	10800	9940	2570 B
MANGANESE		57 J	68	115	150	96	33
MERCURY		0.3 J	0.38	0.2 U	0.38	0.2 U	0.2 U
NICKEL		40	34 B	29 B	61	30 B	20 U
POTASSIUM		8210	6460	12000	14000	11600	1630 B
SELENIUM		4.7 B	12.4 J	2.1 J	14.5 J	5 UJ	1 UJ
SILVER		3 U	3 UJ	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		15000	15400	6410	4120 B	3180 B	9480
THALLIUM		1 U	1 UJ	_ 1 J	1.4 J	1 J	· 1 UJ
VANADIUM		158	122	248	371	289	4 U
ZINC		96 J	51 J	116 J	157 J	98 J	6 UJ
CYANIDE		10 U	10 U				

MP.XLS

	SAMPLE NO.	78-GW19-01	78-GW20-01	78-GW21-01	78-GW22-01	78-GW22-1-01	78-GW22-2-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		4110 J	149000 J	23800 J	78900 J	257000	190000 J
ANTIMONY		7 R	7 U	7 U	14 J	7 R	7 UJ
ARSENIC		3.1 J	30.3	6.3 J	10 J	59.5 J	75.6
BARIUM		101 B	430	382	107 B	411	471
BERYLLIUM		1 B	4 B	2 B	1 B	4 B	12
CADMIUM		5 U	5 U	5 U	10 U	25 U	6
CALCIUM		3700 B	5450 J	32900 J	90100	44500	118000 J
CHROMIUM		10 UJ	231 J	22 J	83 J	238	389 J
COBALT		8 U	35 B	10 B	8 U	8 U	170
COPPER		3 B	61	. 11 B	34	54	92
IRON		8500 J	101000 J	26400 J	27600 J	62300	140000 J
LEAD		8.3	119 J	19.1 J	37.2	272	360 J
MAGNESIUM		5740	13100	9110	5500	12000	13000
MANGANESE		26	93 J	85 J	70	158	348 J
MERCURY		0.2 U	0.37 J	0.2 R	0.3	0.45	0.2 R
NICKEL		20 U	75	20 U	21 B	99	234
POTASSIUM		2130 B	9100	4100 B	6180	12000	10200
SELENIUM		1 UJ	4.2 B	1.1 B	4.2 J	7.5 J	45
SILVER		3 UJ	3 Ü	3 U	3 UJ	3 U	3 U
SODIUM		24000	11900	9480	12100	9910	8230
THALLIUM		1 UJ	1.8 B	1 U	1.7 J	1 U	3 B
VANADIUM		9 B	236	86	114	269	547
ZINC		6 J	250 J	108 J	50 J	150 J	967 J
CYANIDE		10 U	10 U				

MP.XLS

	SAMPLE NO.	78-GW23-01	78-GW24-1-01	78-GW24-2-01	78-GW24-3-01	78-GW25-01	78-GW29-01
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
ALUMINUM		111000 J	160000	1340	304	101000 J	78800 J
ANTIMONY		7 R	7 R	7 R	7 R	7 R	7 R
ARSENIC		.7.6 J	100 J	2 R	2 R	11.4 J	19 J
BARIUM		230	396	34 B	· 17 B	119 B	1070
BERYLLIUM		2 B	7	· · · · · · · · · · · · · · · · · · ·	1 U	2 B	12
CADMIUM		5 U	5 U	5	5	5 U	5 U
CALCIUM		10800	34400	107000	73400	37800	41600
CHROMIUM		101 J	264	10	10 U	82 J	252 J
COBALT		8 B	39 B	8 U	8 U	8 U	17 B
COPPER		25	71	6 B	5 B	26	34
IRON		30800 J	159000	2320	2370	26300 J	125000 J
LEAD		50	152	3.3	2.9 B	30.5	25.5
MAGNESIUM		7110	11600	1740 B	1500 B	4500 B	21900
MANGANESE		87	714	21	41	33	341
MERCURY		0.3	0.75	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL		42	91	20 U	20 U	20 U	125
POTASSIUM		5450	9090	1050 B	982 B	4950 B	11600
SELENIUM		4.4 J	17.6 J	1 R	1 R	1.6 J	2.5 J
SILVER		3 UJ	3 U	3 U	3 U	3 UJ	3 UJ
SODIUM		7450	10800	8350	7050	16400	21200
THALLIUM		1.7 J	1.5 B	1 U	1 U	1.3 J	1 UJ
VANADIUM		108	436	4 J	4 UJ	144	183
ZINC		67 J	291 J	11 J	16 J	34 J	330 J
CYANIDE		10 U	10 U	10 U	10 U	10 U	10 U

4

	SAMPLE NO.	78-GW31-2-01	78-GW31-3-01	78-GW32-2-01	78-GW32-3-01	78-GW33-01	78-GW34-01
	UNITS	UG/L	. UG/L	UG/L	UG/L	UGAL	UG/L
ALUMINUM		110 B	1200	112000 J	539 J	78200	6870
ANTIMONY		7 R	7 R	7 R	7 R	3 U	3 U
ARSENIC		2 R	2 R	21.6 J	2 R	5.6 J	4.4 J
BARIUM		17 B	415	476	42 B	162 B	173 B
BERYLLIUM		1 B	1 B	10	1 B	1 B	1 U
CADMIUM		5 U	5 U	10	5 U	5 U	5 U
CALCIUM		77600	308000	94600	5440	64800	10400
CHROMIUM		10 U	21	215 J	10 UJ	65	10 U
COBALT		8 U	8 U	84	8 U	8 U	8 U
COPPER		3 B	5 B	87	2 U	20 B	11 B
IRON		280	72 B	98500 J	112 J	14900	7250
LEAD		2 U	2 U	146	2 U	18.1	5.5
MAGNESIUM		2200 B	[•] 151 B	13700	319 B	7290	2880 B
MANGANESE		8 B	2 B	328	2 U	86	96
MERCURY		0.3	0.2 U	0.3	0.2 U	0.2 U	0.2 U
NICKEL		20 U	20 U	166	20 U	20 B	20 U
POTASSIUM		1640 B	61600	8460	67300	6900	2620 B
SELENIUM		1 R	1.7 J	99.5 J	1 UJ	12.8 J	1 UJ
SILVER		3 U	3 U	3 UJ	3 UJ	3 UJ	3 UJ
SODIUM		10400	26100	7510	42500	7030	4070 B
THALLIUM		1 U	1 UJ	7.3 J	1.3 J	1 U	1 U
VANADIUM		4 J	10 J	462	5 B	74	15 B
ZINC		23 J	10 J	826 J	6 UJ	37	59
CYANIDE		10 U	10 U	10 U	10 U	_10 U	10 U

	SAMPLE NO.	78-GW35-01	78-GW36-01	78-GW37-01	78-GW38-01	78-GW39-01	
	UNITS	UG/L	UG/L	UG/L	UG/L	UG/L	
ALUMINUM		47100	120000	73500	102000	60000	
ANTIMONY		3 U	20 U	3 U	20 U	20 U	
ARSENIC		2 UJ	3.1 J	4 J	33.6 J	4 UJ	
BARIUM		. 261	· 152 B	123 B	420	256	
BERYLLIUM		1 B	2 U	2 B	4 U	1 U	
CADMIUM		5 U	5 U	5 U	25 U	5 U	
CALCIUM		7480	35400	. 10100	62200	16800	
CHROMIUM		55	111	65	201	60	
COBALT		8 U	8 U	8 U	8 U	10 B	
COPPER		15 B	29	22 B	110	699	
IRON		11800	21200	18800	67500	28800	
LEAD	.•	13.2	30.2	21.8	41.2	186	
MAGNESIUM		5680	5740	4600 B	17500	14300	
MANGANESE		57	62	62	106	84	
MERCURY		0.2 U	0.3	0.2 U	0.2 U	0.52	
NICKEL		20 U	24 B	20 U	32 B	32 B	
POTASSIUM		6150	5820	5990	8180	3840 B	
SELENIUM		3.5 J	1.7 J	1.1 J	1.3 J	4.3 3	
SILVER		3 UJ					
SODIUM		10300	2450 B	7270	10300	19500	
THALLIUM		1 U	1 U	1 U	1 U	1 U	
VANADIUM		59	98	106	235	67	
ZINC		30	57	58	134	138	
CYANIDE		10 U					

f 11

Par

MP.XLS

OPERABLÉ UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW01-01	2-GW02-01	2-GW03-01	2-GW03DW-01	2-GW04-01	2-GW05-01
:	UNITS	UG/L		UG/L	UG/L	UG/L	UG/L
ALUMINÙM		36000		5200	269	16800	4050
ANTIMONY		10 U		10 U	3.5 U	10 U	10 U
ARSENIC		21.2		2.5 B	1 UJ	23.6	2.2 B
BARIUM		52 B		46 B	1420	95 B	100 B
BERYLLIUM		· 1 B		0.5 U	0.5 U	2 B	0.5 U
CADMIUM		7		2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM		23700		8460	450000	11100	21000
CHROMIUM		. 18		11	16	5 U	· 5 U
COBALT		10 B		4 U	4 U	4 U	4 U
COPPER		10 B		4 B	8 B	5 B	3 B
IRON		10300		7190	127	28100	12700
LEAD		15.5 L		3.5 J	1.1 UJ	2.7 J	0.5 UJ
MAGNESIUM		2000		1600 B	75 B	1920 B	4800 B
MANGANESE		35		21	2 U	21	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
POTASSIUM		2560 B		1030 B	187000	1210 B	2130 B
SELENIUM		4.2 B		0.5 U	0.5 U	0.5 U	0.5 U
SILVER		1.5 U		1,5 U	1.5 U	1.5 U	1.5 U
SODIUM		4040 B		5490	103000	5560	10100
THALLIUM		0.5 U		0.5 U	0.5 UJ	0.5 U	0.5 U
VANADIUM		72		10 B	2 U	89	9 B
ZINC		146		13 B	9 B	16 B	6 B
CYANIDE		5 U		5 U	5 U	5 U	5 U

(GW1.XLS

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA TAL METALS AND CYANIDE

	SAMPLE NO.	2-GW06-01	2-GW07-01	2-GW08-01	2-GW09-01	
	UNITS	UG/L	UG/L	UG/L	UG/L	
ALUMINUM		13600	8550	6380	56300	
ANTIMONY		10 U	10 U	3.5 UJ	10 U	
ARSENIC		5.4 B	5.7 B	9.2 B	12.9	
BARIUM		. 173 B	98 B	98 B	· 328	
BERYLLIUM		0.5 U	0.5 U	0.5 U	3 B	
CADMIUM		2.5 U	2.5 U	2.5 U	2.5 U	1
CALCIUM		7940	9350	5710	22100	
CHROMIUM		15	15	5 U	75	
COBALT		12 B	4 U	4 U	10 B	
COPPER		5 B	7 B	6 B	25	
IRON		11700	12500	9150	42000	
LEAD		6.7 J	8.3 J	1.8 UJ	27.2 L	
MAGNESIUM		4120 B	3620 B	2020 B	9980	
MANGANESE		79	72	53	290	
MERCURY		0.1 U	0.1 U	0.1 U	0.1 U	
NICKEL		10 U	10 U	10 U	25 B	
POTASSIUM	÷	2570 B	1940 B	1550 B	6610	
SELENIUM		0.5 U	0.5 U	0.5 U	0.5 U	
SILVER		1.5 U	1.5 U	1.5 U	1.5 U	
SODIUM		21900	8180	11800	18300	· · · · · · · · · · · · · · · · · · ·
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U	
VANADIUM		15 B	18 B	12 B	86	
ZINC	•	26	22	27	103	
CYANIDE	·	<u> </u>	5 U	<u>5 U</u>	5 U	

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA DISSOLVED METALS

	SAMPLE NO.	2-GW01D-01	2-GW02D-01	2-GW03D-01	2-GW03DWD-01	2-GW04D-01	2-GW05D-01
	UNITS	UG/L		UG/L	UG/L	UG/L	UG/L
ALUMINUM		1930		66 B	89 B	60 B	1990
ANTIMONY		10 U .		10 U	3.5 UJ	10 U	10 U
ARSENIC		2.2 B		1 U	1 UJ	6.1 B	1 U
BARIUM		42 B		25 B	1400	64 B	98 B
BERYLLIUM		1 B		0.5 U	0.5 U	0.5 U	1 B
CADMIUM		2.5 U		2.5 U	2.5 U	2.5 U	2.5 U
CALCIUM		24400		7100	441000	11300	21800
CHROMIUM		5 U		5 U	11	5 U	5 U
COBALT		4 U		4 U	4 U	4 U	4 U
COPPER		4 B		2 B	6 B	9 B	4 B
IRON		2560		2170	10 U	2720	7400
LEAD		2.1 J		0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
MAGNESIUM		5220		1030 B	26 B	1840 B	4900 B
MANGANESE		51	x	4.5 U	1 U	17	46
MERCURY		0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
NICKEL		10 U		10 U	10 U	10 U	10 U
POTASSIUM		2140 B		589 B	188000	1130 B	2170 B
SELENIUM		0.5 U		0.5 U	0.5 U	0.5 U	0,5 U
SILVER		1.5 U		1.5 U	1.5 U	1.5 U	1.5 U
SODIUM		3590 B		5400	103000	5710	9970
THALLIUM		0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
VANADIUM		2 U		2 U	2 U	2 U	2 U
ZINC		28		3 U	3 U	8 B	9 B
CYANIDE							

OPERABLE UNIT NO. 5 - SITE 2 SHALLOW AND DEEP MONITORING WELLS GROUNDWATER STATISTICAL SUMMARY REMEDIAL INVESTIGATION CTO - 19174 MCB CAMP LEJEUNE, NORTH CAROLINA DISSOLVED METALS

	SAMPLE NO.	2-GW06D-01	2-GW07D-01	2-GW08D-01	2-GW09D-01		
	UNITS	UG/L	UG/L	UG/L	UG/L	•	
ALUMINUM		149 B	43 B	95 B	1230		
ANTIMONY		10 U	10 U	3.5 U	10 U		
ARSENIC		2.9 B	1 U	7.1 B	1 U		•
BARIUM		126 B	49 B	62 B	149 B		
BERYLLIUM		0.5 U	0.5 U	0.5 U	1 B		
CADMIUM		2.5 U	2.5 U	2.5 U	2.5 U		
CALCIUM		8080	9590	5800	20800		
CHROMIUM		5 U	5 U	5 U	10	•	
COBALT		10 B	8 B	4 U	14 B		
COPPER		2 B	5 B	4 B	5 B		-
IRON		7070	4660	6180	7040		
LEAD		0.5 UJ	0,5 UI	0.5 UJ	0.5 UJ		
MAGNESIUM		3610 B	3060 B	1730 B	6890		
MANGANESE		65	48	40	129		
MERCURY		0.1 U	0.1 U	0.1 U	0.1 U		
NICKEL		10 U	10 U	10 U	10 U		
POTASSIUM		1970 B	1490 B	1150 B	2790		
SELENIUM		0.5 U	0.5 U	0.5 U	0.5 U		
SILVER		1.5 U	1.5 U	1.5 U	1.5 U		
SODIUM		22600	8720	12100	17200		
THALLIUM		0.5 U	0.5 U	0.5 U	0.5 U		
VANADIUM		2 U	2 U	2 U	2 U		
ZINC		12 B	13 B	19 B	35		
CYANIDE					•		

2MGWID.XLS

APPENDIX N WHITE OAK RIVER BASIN REFERENCE DATA Statistical Summary of Analytical Results (Surface Water)

KEY TO STATISTICAL AND ANALYTICAL SUMMARY TABLES

U - Indicated analyte was analyzed for but not detected

J - Indicates an estimated value

UJ - Not detected, quantitation limit may be inaccurate or imprecise

R - Result is rejected and unusable

B - Not detected substantially above the level reported in laboratory or field blanks (organics)

P - There is greater than 25% difference for detected pesticide/PCB concentrations between the two GC columns, the lower of the two values is reported

L - Result is biased low

K - Result is biased high

ND - Analyte not detected

NZ - Analyte not analyzed

mg/L - Milligrams per liter

ug/L - Micrograms per liter

mg/kg - Milligrams per kilogram

ug/kg - Micrograms per kilogram

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - METALS

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)		SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Aluminum	692.00	692.00	+	HC-SW04	253.10	488.87	1019.72	1	5	20%
Arsenic	20.00	20.00	+	HC-SW03	5.30	13.35	3190.11	1	5	20%
Barium	9.00	26.00	+	HC-SW03	19.60	25,87	35.22	5	5	100%
Calcium	11600.00	107000.00	+	HC-SW03D	53760.00	92784.90	456379.04	5	5	100%
Chromium	125.00	130.00	+	HC-SW03	54.70	118.12	40374.07	2	5	40%
Iron	291.00	746.00	+	HC-SW01	492.00	666.33	793.41	5	5	100%
Magnesium	954.00	633000.00	+	HC-SW03	258640.80	576299.05	1.50E+16	5	5	100%
Potassium	14500.00	203000.00	+	HC-SW03	84234.00	187308.88	5.24E+12	3	5	60%
Selenium	6.00	6.00	+	HC-SW03	2.00	4.29	38.67	1	5	20%
Sodium	6090.00	2560000.00	+	HC-SW03D	1.01E+06	2.17E+06	4.80E+14	5	5	100%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ł

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - PESTICIDES/PCBs

1

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO PESTICIDES/PCBs	WERE DETEC	TED						

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ŧ

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

PARAMETER		MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO SEMIVOLATILE OR	BANIC COMPC	UNDS WERE DET	TECTED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ŧ

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

ł.

	MINIMUM DETECTED VALUE	MAXIMUM DETECTED VALUE	SAMPLE No. OF MAXIMUM DETECTED	ARITHMETIC	RME	LOG NORMAL UPPER 95% CONFIDENCE LEVEL	No. OF TIMES	No. OF TIMES	FREQUENCY OF
PARAMETER	(ug/L)	(ug/L)	VALUE	(ug/L)	(ug/L)	(ug/L)	DETECTED	ANALYZED	DETECTION

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - METALS

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Aluminum	535.00	535.00	*+ HM-SW02	269.50	657.32	48037.76	1	3	33%
Barium	20,00	49.00	*+ HM-SW01	35.67	60.35	204.30	3	3	100%
Calcium	14100.00	302000.00	*+ HM-SW03	118766.67	387190.45	4.42E+14	3	3	100%
Chromium	36.00	158.00	*+ HM-SW03	66.33	202.69	3.67E+12	2	3	67%
Iron	320.00	559.00	*+ HM-SW02	434.67	636.62	843.56	3	3	100%
Lead	58.10	58.10	*+ HM-SW03	19.95	75,65	1.70E+27	1	3	33%
Magnesium	2830.00	754000.00	*+ HM-SW03	288610.00	973947.76	1.02E+35	3	3	100%
Potassium	41100.00	288000,00	*+ HM-SW03	109978.33	372096.67	1.33E+36	2	3	67%
Selenium	1.50	41.00	*+ HM-SW03	15.00	52.97	8.42E+13	2	3	67%
Silver	37.00	37.00	*+ HM-SW03	16.83	46.42	284713.62	1	3	33%
Sodium	16500.00	6750000.00	*+ HM-SW03	2501833.33	8733985.25	1.96E+44	3	3	100%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - PESTICIDES/PCBs

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO PESTICIDES/PCBs	WERE DETECT	red						

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

i

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO SEMIVOLATILE OR	SANIC COMPO	OUNDS WERE DET	ECTED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

í

PARAMETER	MINIMUM MAXIMUN DETECTED DETECTE VALUE VALUE (ug/L) (ug/L)	 ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO VOLATILE OBGANIC COMPOL	red					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

÷

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - METALS

PARAMETER	MINIMUM DETECTED (VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)		ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Barium	27.00	29.00	*+ WC-SW02	28.00	34.31	32.19	2	2	100%
Calcium	40500.00	46900.00	*+ WC-SW02	43700.00	63904.80	58284.51	2	2	100%
Chromium	97.00	97.00	*+ WC-SW03	52.25	334.80	1.32E+20	1	2	50%
Iron	321.00	660.00	*+ WC-SW02	490.50	1560.72	14358.69	2	2	100%
Magnesium	29000.00	44800,00	*+ WC-SW03	36900.00	86780.60	133710.58	2	2	100%
Potassium	10900.00 1	136000.00	*+ WC-SW03	73450.00	468390.70	1.01E+23	2	2	100%
Sodium	202000.00 8	395000.00	*+ WC-SW03	548500.00	2736301.00	6.83E+11	2	2	100%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - PESTICIDES/PCB9

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Aldrin	0.04	0.04 *+	WC-SW02	0.03	0.06	0.07	1	22	50%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

PARAMETER	MINIMUM DETECTED VALUE (ug/L)	MAXIMUM DETECTED VALUE (ug/L)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO SEMIVOLATILE OR	JANIC COMPC	UNDS WERE DET	TECTED			-		

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

.

PARAMETER	MINIMUM MAXIMU DETECTED DETECT VALUE VALUE (ug/L) (ug/L)	ED OF MAXIMUM	ARITHMETIC AVERAGE (ug/L)	RME (ug/L)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/L)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO VOLATILE ORGANIC COMPO	UNDS WERE DETECT	'ED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

Statistical Summary of Analytical Results (Sediment)

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - METALS

	MINIMUM	MAXIMUM	SAMPLE No.	······		LOG NORMAL			
	DETECTED	DETECTED	OF MAXIMUM	ARITHMETIC		UPPER 95%			
	VALUE	VALUE	DETECTED	AVERAGE	RME	CONFIDENCE LEVEL	No. OF TIMES	No. OF TIMES	FREQUENCY OF
PARAMETER	(mg/kg)	(mg/kg)	VALUE	(mg/kg)	(mg/kg)	(mg/kg)	DETECTED	ANALYZED	DETECTION
Aluminum	780.00	14000.00	+ HC-SD03-612	5467,78	8305.91	20353.32	9	9	100%
Arsenic	0.26	1.90	*+ HC-SD02-612	1.71	2.67	8.56	6	9	67%
Barium	4.10	17.20	+ HC-SD03-612	9,75	13.11	21.84	8	9	89%
Beryllium	0.14	0.32	+ HC-SD02-612	0.16	0.24	4.60	3	6	50%
Cadmium	0.03	0.66	HC-SD03-06	0.11	0.24	0.42	7	9	78%
Calcium	1030.00	3620.00	+ HC-SD01-06	2645.56	3233.82	3840.09	9	9	100%
Chromium	1.30	41.60	+ HC-SD03-612	10.81	18.97	53.55	9	9	100%
Cobalt	4.50	5.00	HC-SD03-612	1.87	2.91	4.01	2	9	22%
Copper	0.66	1.50	*+ HC-SD02-06	1.35	1.75	2.01	6	9	67%
Iron	382.00	11100.00	+ HC-SD03-06D	3396.56	5709.65	28323.00	9	9	100%
Lead	3.70	5,30	*+ HC-SD03-06	4.50	9.55	305.02	2	2	100%
Magnesium	77.10	6540.00	+ HC-SD03-612	1977.79	3486.31	1292043.17	7	9	78%
Manganese	3.50	64.70	HC-SD03-612	16.54	29.38	62.63	9	9	100%
Mercury	0.25	0.42	*+ HC-SD03-612	0.34	0.48	11.17	3	3	100%
Nickel	1.80	12.10	+ HC-SD03-612	3.77	6.49	17.25	4	9	44%
Potassium	623.00	1840.00	+ HC-SD03-612	671.39	1079.26	2769.97	4	9	44%
Selenium	0.21	0.60	HC-SD02-06	0,30	0.39	0.48	5	9	56%
Sodium	1630.00	2750.00	+ HC-SD02-06	845.25	1750.35	183541390882.91	2	6	33%
Thallium	0.14	0.44	+ HC-SD03-612	0,23	0.31	0.46	6	9	67%
Vanadium	1.50	36.90	+ HC-SD03-612	11.11	18,54	56.26	9	9	100%
Zinc	20.80	40.00	+ HC-SD03-612	12.71	22.07	63.76	3	9	33%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = ROTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

í

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - PESTICIDES/PCBs

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
beta-BHC	1.70	1.70	*+ HC-SD04-612	1.93	2.39	2.58	4	9	110/
deita-BHC	0.64		*+ HC-SD04-612	1.82	2.39	2.91	1	9	11% 11%
							1	-	
Heptachlor	0.48	2.00	*+ HC-SD04-612	1.89	2.42	3.26	2	9	22%
4,4'-DDD	1.50	4.00	HC-SD03-612	2.16	3.11	3.50	3	9	33%
4,4'-DDT	1.20	1.20	*+ HC-SD03-06D	3.23	4,23	5.08	1	9	11%
Methoxychlor	0.94	0.94	*+ HC-SD04-06	17.66	23.58	92.52	1.	9	11%
Endrin aldehyde	0.59	7.10	+ HC-SD02-06	3.56	5,02	10.80	3	9	33%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

1

PARAMETER	MINIMUM MAXIMUM DETECTED DETECTED VALUE VALUE (ug/kg) (ug/kg)		RITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO SEMIVOLATILE ORGANIC COMP	OUNDS WERE DETEC	CTED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)		ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Acetone	70.00	70.00	HC-SD01-06	18.06	30.44	36.73	1	9	11%
Carbon Disulfide	14.00	19.00	HC-SD02-612	12.44	15.67	18.14	2	9	22%
2-Butanone	7.00	7.00	*+ HC-SD01-06	11.06	13.94	15.49	1	9	11%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ł

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - METALS

.

	MINIMUM DETECTED			SAMPLE No. OF MAXIMUM	ARITHMETIC		LOG NORMAL UPPER 95%			
	VALUE	VALUE		DETECTED	AVERAGE	RME	CONFIDENCE LEVEL	No. OF TIMES	No. OF TIMES	FREQUENCY OF
PARAMETER	(mg/kg)	(mg/kg)		VALUE	(mg/kg)	(mg/kg)	(mg/kg)	DETECTED	ANALYZED	DETECTION
Aluminum	337.00	13600.00	ŧ	HM-SD02-06	6181.29	10282.21	655067.62	7	7	100%
Barium	11.00	18.70	t	HM-SD02-06	8.71	13.92	68.49	4	7	57%
Cadmium	0.03	0,11		HM-SD01-06D	0.06	0.08	0.10	7	7	100%
Calcium	282.00	7860,00	ŧ	HM-SD02-612	2952.86	4844.12	22431.34	7	7	100%
Chromium	1.10	38.40 -	+	HM-SD02-06	19.63	32.39	2021.73	7	7	100%
Cobalt	4.00	4.40	ł	HM-SD02-06	2.02	3.18	6.18	2	7	29%
Iron	225.00	32400.00 -	+	HM-SD02-612	12262.43	21399.01	27918943.98	7	7	100%
Lead	0.62	9.20 -	ł	HM-SD03-06	4.35	6.94	32.96	7	7	100%
Magnesium	26.70	5700.00	+	HM-SD03-06	2576.66	4422.69	136198282.35	7	7	100%
Manganese	1.30	67.20 -	+	HM-SD02-06	34.14	56.82	8851.72	7	7	100%
Mercury	0.09	0.35 -	t	HM-SD03-06	0.23	0,30	0.38	7	7	100%
Nickel	9.60	14.20 -	ŧ	HM-SD03-06	6.76	11.07	359.48	4	7	57%
Potassium	1510.00	1760.00 +	ł	HM-SD03-612	1007.00	1596.65	13233.89	4	7	57%
Selenium	0.25	0.40		HM-SD02-06	0.21	0.29	0.39	2	7	29%
Silver	0.49	0.49 *	+	HM-SD01-06	0.39	0,49	0.60	1	7	14%
Thallium	0.13	0.37 -	ł	HM-SD02-06	0.20	0.29	0.52	4	7	57%
Vanadium	0,66	30.00 H	ł	HM-SD02-612	16.69	27.76	18094.26	6	7	86%
Zinc	6.70	43.10	+	HM-SD02-06	23.57	34.53	65.13	7	7	100%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ł

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - PESTICIDES/PCBs

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
beta-BHC	3.80	7.30	HM-SD01-06D	3.24	4.69	5.98	2	7	00%
Aldrin	0.56		*+ HM-SD01-612	1.84	2.60	4.20	2	7	29% 29%
Dieldrin	0.58		*+ HM-SD01-612	3,55	5.13	12.37	2	7	29%
4,4'-DDE	1.00	4.30	*+ HM-SD01-612	4.01	5.37	8.82	2	7	29%
4,4'-DDD	0.87	3.10	*+ HM-SD01-612	2.85	4.16	6,44	4	7	57%
4,4'-DDT	1.70	1.70	*+ HM-SD01-612	3.79	5.13	6.75	1	7	14%
alpha-Chlordane	1.30	1.30	*+ HM-SD01-612	1.99	2.61	3.14	1	7	14%
gamma-Chlordane	3.00	3.00	+ HM-SD01-612	2.24	2.86	3.56	1	7	14%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

....

ŧ

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

T

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
Di-n-butylphthalate	534.00	619.00	+ HM-SD02-612	423.29	573.31	766.73	3	7	43%
bis(2-Ethylhexyl)phthalate	454.00	454.00	*+ HM-SD03-612	378.64	500.04	607.73	1	7	14%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE; THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

• • •

ż

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	NO VOLATILE ORGANI	C COMPOUND	S WERE DETECT	ED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SEDIMENT - METALS

PARAMETER	MINIMUM DETECTED VALUE (ma/ka)	VALUE	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE	RME	LOG NORMAL UPPER 95% CONFIDENCE LEVEL	No. OF TIMES	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	(mg/kg)	(mg/kg)	VALUE	(mg/kg)	(mg/kg)	(mg/kg)	DETECTED	ANALTZED	DETECTION
Aluminum	8200,00	14800.00	*+ WC-SD02-06	12275.00	15932.10	19239.95	4.	4	100%
Barium	13.30	28.20	+ WC-SD02-06	18.83	26.76	35.92	4	4	100%
Cadmium	0.06	0.26	+ WC-SD02-06	0.13	0.24	1.11	4	4	100%
Calcium	2190.00	4060.00	*+ WC-SD02-06	3222.50	4132.21	4914.08	4	4	100%
Chroinium	8.70	42.60	+ WC-SD03-612	24.93	42.26	246.57	4	4	100%
Cobalt	3.50	3.90	*+ WC-SD03-612	2.44	4.16	21.71	2	4	50%
Iron	8120.00	20700.00	+ WC-SD03-612	13980.00	20133.62	29586.84	4	4	100%
Lead	5.10	16.90	+ WC-SD02-06	9.85	16.48	51.03	4	4	100%
Magnesium	618.00	6060.00	*+ WC-SD03-612	3197.00	6127.63	817766.37	4	4	100%
Manganese	26,00	47.80	*+ WC-SD03-612	39.35	50.44	60.95	4	4	100%
Mercury	0.23	0.40	*+ WC-SD02-06	0.31	0.41	0,48	4	4	100%
Nickel	3.80	11.40	+ WC-SD03-612	7,25	11.11	21.80	4	4	100%
Potassium	1410.00	1590.00	*+ WC-SD03-612	905.88	1719.51	81148.45	2	4	50%
Thallium	0.24		+ WC-SD03-06	0.16	0.23	0,31	1	4	25%
Vanadium	11.90	31.00	+ WC-SD03-612	21.33	30.50	45.84	4	4	100%
Zino	27.20	52.00	+ WC-SD02-06	33.83	48.09	61,59	4	4	100%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SEDIMENT - PESTICIDES/PCBs

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
delta-BHC	0.79	0.79	*+ WC-SD02-612	1.99	3.02	9.99	1	4	25%
Aldrin	1.20	1.20	*+ WC-SD02-06	1.93	2.65	3.66	1	4	25%
Dieldrin	3.70	3.70	*+ WC-SD02-06	4.00	4.79	4.98	1	4	25%
4,4'-DDE	16.00	16.00	+ WC-SD02-06	7.08	14.12	97.81	1	4	25%
4,4'-DDD	· 12.00	12.00	+ WC-SD02-06	6.08	10.78	28.91	1	4	25%
4,4'-DDT	0.76	2.60	*+ WC-SD02-06	2.37	4.64	91.00	3	4	75%

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

1

Benzo(a)pyrene	544.00	544.00	*+ WC-SD03-612	436.25	554.81	635.17	1	4	25%
PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

ł

MARINE CORPS BASE CAMP LEJEUNE STATISTICAL SUMMARY OF ANALYTICAL RESULTS BACKGROUND - WEBB CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

.

PARAMETER	MINIMUM DETECTED VALUE (ug/kg)	MAXIMUM DETECTED VALUE (ug/kg)	SAMPLE No. OF MAXIMUM DETECTED VALUE	ARITHMETIC AVERAGE (ug/kg)	RME (ug/kg)	LOG NORMAL UPPER 95% CONFIDENCE LEVEL (ug/kg)	No. OF TIMES DETECTED	No. OF TIMES ANALYZED	FREQUENCY OF DETECTION
	VOLATILE ORGANIC	COMPOUND	S WERE DETECTI	ED					

* = THE RME IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

+ = THE LOG NORMAL 95% UCL IS GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE

*+ = BOTH THE RME AND LOG NORMAL 95% UCL ARE GREATER THAN THE MAXIMUM DETECTED VALUE; THEREFORE, THE MAXIMUM VALUE IS USED TO CALCULATE CHRONIC DAILY INTAKE RME = REASONABLE MAXIMUM EXPOSURE

i

Analytical Summary of Results (Surface Water)

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - METALS

.

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	HC-SW01 5167-16 08-MAY-19 UG/L	994	HC-SW02 5162 06-MAY-19 UG/L		HC-SW03 5166 06-MAY-19 UG/L		HC-SW03 5163 06-MAY-1 UG/L		HC-SW04 5152 08-MAY-1 UG/L	
Aluminum	356	U	303	U	301	U	187	U	692	
Arsenic	1	U	1	UJ	20		10	UJ	1	U
Barium	19	J	20	J	26	J	24	J	9	J
Calcium	27000		36600		86600		107000		11600	
Chromium	9	U	19	U	130	J	125	J	9	U
Iron	746		528		339		291		556	
Magnesium	1450		44800		633000		613000		954	
Potassium	1670	U	14500		203000		202000		1670	U
Selenium	1	U	5	U	6	J	1	UJ	. 1	UJ
Sodium	6900		383000		2090000		2560000		6090	

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER PESTICIDES AND PCBs

.

BAKER I.D.	HC-SW01	HC-SW02	HC-SW03	HC-SW03D	HC-SW04
LABORATORY I.D.	5167-16	5162	5166	5163	5152
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994	06-MAY-1994	08-MAY-1994
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l

NO PESTICIDES OR PCBs WERE DETECTED

i

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

BAKER I.D.	HC-SW01	HC-SW02	HC-SW03	HC-SW03D	HC-SW04
LABORATORY I.D.	5167-16	5162	5166	5163	5152
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994	06-MAY-1994	08-MAY-1994
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l

NO SEMIVOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

BAKER I.D.	HC-SW01	HC-SW02	HC-SW03	HC-SW03D	HC-SW04
LABORATORY I.D.	5167-16	5162	5166	5163	5152
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994	06-MAY-1994	08-MAY-1994
UNITS	ug/l	ug/l	ug/l	ug/l	ug/l

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - METALS

1

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	HM-SW01 5167-18 08-MAY-1994 UG/L	HM-SW02 5161 06-MAY-1994 UG/L	HM-SW03 5160 06-MAY-1994 UG/L
Aluminum	259 U	535 J	288 U
Barium	49 J	38 J	20 J -
Calcium	14100	40200	302000
Chromium	10 U	36 J	158 J
Iron	425	559	320
Lead	1 U	2.5 U	58.1
Magnesium	2830	109000	754000
Potassium	1670 U	41100	288000
Selenium	1.5 J	5 U	41 J
Silver	10 U	17 U	37 J
Sodium	16500	739000	6750000

ł

MARINE CORPS BASE CAMP LEJEUNE ANLAYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - PESTICIDES AND PCBs

BAKER I.D.	HM-SW01	HM-SW02	HM-SW03
LABORATORY I.D.	5167-18	5161	5160
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l	ug/l

NO PESTICIDES OR PCBs WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

BAKER I.D.	HM-SW01	HM-SW02	HM-SW03
LABORATORY I.D.	5167-18	5161	5160
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l	ug/l

NO SEMIVOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

BAKER I.D.	HM-SW01	HM-SW02	HM-SW03
LABORATORY I.D.	5167-18	5161	5160
DATE COLLECTED	08-MAY-1994	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l	ug/l

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - METALS

ı

BAKER I.D.	WC-SW02	WC-SW03
LABORATORY I.D.	5167-8	5158
DATE COLLECTED	06-MAY-1994	06-MAY-1994
UNITS	UG/L	UG/L
Barium	29 J	27 J
Calcium	46900	40500
Chromium	15 U	97 J
Iron	660	321
Magnesium	29000	44800
Potassium	10900	136000
Sodium	202000	895000

ŝ

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - PESTICIDES AND PCBs

ŧ

BAKER I.D.	WC-SW02	WC-SW03
LABORATORY I.D.	5167-8	5158
DATE COLLECTED	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l
Aldrin	0.035 J	0.05 U

i

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - SEMIVOLATILE ORGANIC COMPOUNDS

ĩ

BAKER I.D.	WC-SW02	WC-SW03
LABORATORY I.D.	5167-8	5158
DATE COLLECTED	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l

NO SEMIVOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SURFACE WATER - VOLATILE ORGANIC COMPOUNDS

4

BAKER I.D.	WC-SW02	WC-SW03
LABORATORY I.D.	5167-8	5158
DATE COLLECTED	06-MAY-1994	06-MAY-1994
UNITS	ug/l	ug/l

ł

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

Analytical Summary of Results (Sediment)

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - METALS

ī

BAKER I.D. LABORATORY I.D DATE COLLECTED UNITS	HC-SD01-06 5050 8-MAY-1994 MG/KG	HC-SD01-612 5044 8-MAY-1994 MG/KG	HC-SD02-06 5057-2 6-MAY-1994 MG/KG	HC-SD02-612 5054 6-MAY-1994 MG/KG	HC-SD03-06 5238 07-MAY-1994 MG/KG	HC-SD03-06D 5237 07-MAY-1994 MG/KG	HC-SD03-612 5236 07-MAY-1994 MG/KG	HC-SD04-06 5052 8-MAY-1994 MG/KG	HC-SD04-612 5051 8-MAY-1994 MG/KG
Aluminum	2940 J	1880 J	7820 J	10100 J	3120 J	7310 J	14000 J	780 J	1260 J
Arsenic	0.46 J	0,28 J	1.1 J	1.9 J	7.5 U	6.5 U	7.9 U	0.45 J	0.26 J
Barium	16.3 J	14.6 J	9.2 J	8.7 J	3.9 U	10.2	17.2	4.1 J	5.5 J
Beryllium	0.14 J	0,16 U	0.25 J	0.32 J	0.95 R	0.92 R	1.3 R	0.13 U	0.15 U
Cadmium	0.03 J	0.03 J	0.1 J	0.04 J	0.66	0,08	0.04 U	0.03 J	0.03 UJ
Calcium	3620 J	3330 J	2030 J	1610 J	3380 J	3350 J	3310 J	1030 J	2150 J
Chromium	2.3	3.2	6	6	16.1	18.8	41.6	2	1.3
Cobait	1.6 U	1.8 U	2.7 U	1.8 U	3.7 U	4.5	5	1.5 U	1.6 U
Copper	1	1.1	1.5	0.81	4.9 U	4.3 U	3.5 U	0.66	0.73
Iron	648	586	3660	4630	7280 J	11100 J	1700 J	382	583
Lead	0.77 R	0.88 R	1.1 R	7.1 R	5.3	3.7	8.6 R	1 R	1.1 R
Magnesium	87.7	77.1	1450	1040	4420	4130	6540	48.2 U	62.5 U
Manganese	6.9	6.5	6.5	4.9	17.1	35.1	64.7	3.7	3.5
Mercury	0.19 R	0.13 R	0.42 R	0.24 R	0.34	0.25	0.42	0.11 R	0.08 R
Nickel	1.6 U	1.8 U	2.7 U	1.8	9.9	5.5	12.1	1.5 U	1.6 U
Potassium	349 U	396 U	623	395 U	1420	1250	1840	324 U	355 U
Selenium	0.27 J	0.34 J	0.6 J	0.47 J	0.48 UJ	0.41 UJ	0.51 UJ	0.21 J	0.2 UJ
Sodium	339 U	385 U	2750	1630	14100 R	9860 R	6620 R	315 U	344 U
Thallium	0.14	0.16	0.42	0.28	0.34 U	0.29	0.44	0.13 U	0.15 U
Vanadium	2.6	2.8	8.4	7	20.5	18.4	36.9	1.5	1.9
Zinc	4.9 U	4.5 U	9.7 U	6.6 U	20.8	34.3	40	4.5 U	8.3 U

ł

MARINE COPRS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - PESTICIDES AND PCBs

í

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	HC-SD01-06 5057-7 8-MAY-1994 ug/kg	HC-SD01-612 5044 8-MAY-1994 ug/kg	HC-SD02-06 5055 6-MAY-1994 ug/kg	HC-SD02-612 5054 6-MAY-1994 ug/kg	HC-SD03-06 5238 07-MAY-1994 ug/kg	HC-SD03-06D 5237 07-MAY-1994 ug/kg	HC-SD03-612 5236 07-MAY-1994 ug/kg	HC-SD04-06 5052 8-MAY-1994 ug/kg	HC-SD04-612 5051 8-MAY-1994 ug/kg
beta-BHC	2.4 U	2.8 U	4.2 U	2.8 U	5.8 U	4.9 U	6.2 U	2.3 U	1.7 J
delta-BHC	0.64 J	2.8 U	4.2 U	2.8 U	5.8 U	4.9 U	6.2 U	2.3 U	2.5 U
Heptachlor	0.48 J	2.8 U	4.2 U	2.8 U	5.8 U	4,9 U	6,2 U	2.3 U	2 J
4,4'-DDD	2.4 U	2.8 U	1.5 J	2.8 U	11 U	2 J	4 J	2.3 U	2.5 U
4,4'-DDT	4.7 U	5.4 U	8.2 U	5.3 U	11 U	1.2 J	12 U	4.4 U	4.8 U
Methoxychlor	24 U	28 U	42 U	28 U	58 U	49 U	62 U	0.94 J	25 U
Endrin aldehyde	0.59 J	5.4 U	7.1 J	0.77 J	11 U	9.6 U	12 U	4.4 U	4.8 U

ł

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

1

BAKER I.D. LABORATORY I.D.	HC-SD01-06 5057-7	HC-SD01-612 5044	HC-SD02-06 5055	HC-SD02-612 5054	HC-SD03-06 5238	HC-SD03-06D 5237	HC-SD03-612 5236	HC-SD04-06 5052	HC-SD04-612 5051
DATE COLLECTED	8-MAY-1994	8-MAY-1994	6-MAY-1994	6-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994	8-MAY-1994	8-MAY-1994
UNITS	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg

ł

NO SEMIVOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HADNOT CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

1

BAKER I.D.	HC-SD01-06	HC-SD01-612	HC-SD02-06	HC-SD02-612	HC-SD03-06	HC-SD03-06D	HC-SD03-612	HC-SD04-06	HC-SD04-612
LABORATORY I.D.	5057-7	5044	5055	5054	5238	5237	5236	5052	5051
DATE COLLECTED	8-MAY-1994	8-MAY-1994	6-MAY-1994	6-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994	8-MAY-1994	8-MAY-1994
UNITS	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Acetone	70 J	16 UJ	25 UJ	16 UJ	34 UJ	29 UJ	37 UJ	13 UJ	15 UJ
Carbon Disulfide	14 U	16 U	14	19 J	34 U	29 U	37 U	13 U	15 U
2-Butanone	7 J	16 UJ	25 UJ	16 UJ	34 UJ	29 UJ	37 UJ	13 U	15 UJ

i

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - METALS

1

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	HM-SD01-06 5243-18 08-MAY-1994 MG/KG	HM-SD01-06D 5220 08-MAY-1994 MG/KG	HM-SD01-612 5219 08-MAY-1994 MG/KG	HM-SD02-06 5242 07-MAY-1994 MG/KG	HM-SD02-612 5241 07-MAY-1994 MG/KG	HM-SD03-06 5240 07-MAY-1994 MG/KG	HM-SD03-612 5239 07-MAY-1994 MG/KG
Aluminum	457 J	337 J	505 J	13600 J	9850 J	8760 J	9760 J
Barium	3.4 U	2.1 U	3.9 U	18.7	13.7	11	12.9
Cadmium	. 0.03	0,11	0.03	0.08	0.06	0.05	0.03
Calcium	282 J	508 J	2850 J	4250 J	7860 J	2920 J	2000 J
Chromium	1.6	1.1	1.5	38.4	28.1	30.7	36
Cobalt	1.3 U	1,4 U	1.4 U	4.4	3.5 U	3.9 U	4
Iron	262 J	225 J	350 J	15800 J	32400 J	16900 J	19900 J
Lead	0.62 J	0.74 J	1	6	7.2	9.2	5.7
Magnesium	35.5	26.7	34.4	4940	3000	5700	4300
Manganese	1.9	1.3	1.6	67.2	55.5	50.2	61.3
Mercury	0.09	0.16	0.18	0.27	0.32	0.35	0.27
Nickel	1.3 U	1.4 U	1.4 U	11.2	9.6	14.2	10.3
Potassium	297 U	304 U	317 U	1510	1600	1720	1760
Selenium	0.17 U	0.17 U	0.25 J	0.4 J	0.45 UJ	0.5 UJ	0.37 UJ
Silver	0.49	0.37 U	0.39 U	0.85 U	0.95 U	1.1 U	0.79 U
Thallium	0.12 U	0.12 U	0.13	0.37	0.32	0.35 U	0.27
Vanadium	0.84	0.62 U	0.66	27.1	30	28.4	29.5
Zinc	9.7	6.7	8.3	43.1	33.2	34.1	29.9

·. .

ŧ

• .. •

· .

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - PESTICIDES AND PCBs

.

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	HM-SD01-06 5243-18 08-MAY-1994 ug/kg	HM-SD01-06D 5220 08-MAY-1994 ug/kg	HM-SD01-612 5219 08-MAY-1994 ug/kg	HM-SD02-06 5242 07-MAY-1994 ug/kg	HM-SD02-612 5241 07-MAY-1994 ug/kg	HM-SD03-06 5240 07-MAY-1994 ug/kg	HM-SD03-612 5239 07-MAY-1994 g/kg
beta-BHC	2.1 UJ	7.3 J	3.8	5.1 U	5.5 U	6 U	4.5 U
Aldrin	2.1 U	0.56 J	0,72 J	5.1 U	5.5 U	6 U	4.5 U
Dieldrin	4 U	0.58 J	1.5 J	9.8 U	11 U	12 U	8.8 U
4,4'-DDE	4 U	1 J	4.3	9.8 U	11 U	12 U	8.8 U
4,4'-DDD	4 U	0.87 J	3.1	9.8 U	11 U	2.5 J	1.1 J
4,4'-DDT	4 U	4.1 U	1.7 J	9.8 U	11 U	12 U	8.8 U
alpha-Chlordane	2.1 U	2.1 U	1.3 J	5.1 U	5.5 U	6 U	4.5 U
gamma-Chlordane	2.1 U	2.1 U	3	5.1 U	5.5 U	6 U	4.5 U

. .

•

ł

)

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

BAKER I.D.	HM-SD01-06	HM-SD01-06D	HM-SD01-612	HM-SD02-06	HM-SD02-612	HM-SD03-06	HM-SD03-612
LABORATORY I.D.	5243-18	5220	5219	5242	5241	5240	5239
DATE COLLECTED	08-MAY-1994	08-MAY-1994	08-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994
UNITS	ug/kg						
Di-n-butylphthalate	401 U	412 U	429 U	614 J	619 J	1150 U	534 J
bis(2-Ethylhexyl)phthalate	401 UJ	412 UJ	429 UJ	943 U	1058 U	1150 U	454 J

ł

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - HOLLAND MILL CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

.

BAKER I.D.	HM-SD01-06	HM-SD01-06D	HM-SD01-612	HM-SD02-06	HM-SD02-612	HM-SD03-06	HM-SD03-612
LABORATORY I.D.	5243-18	5220	5219	5242	5241	5240	5239
DATE COLLECTED	08-MAY-1994	08-MAY-1994	08-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994	07-MAY-1994
UNITS	ug/kg						

÷

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SEDIMENT - METALS

1

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	WC-SD02-06 5243-10 06-MAY-1994 MG/KG	WC-SD02-612 5232 06-MAY-1994 MG/KG	WC-SD03-06 5235 07-MAY-1994 MG/KG	WC-SD03-612 5234 07-MAY-1994 MG/KG
Aluminum	14800 J	8200	11500 J	14600 J
Barium	28.2	13.3	14.6	19.2
Cadmium	0.26	0.12	0.06	0.07
Calcium	4060 J	3260 J	2190 J	3380 J
Chromium	18.1	8.7	30.3	42.6
Cobalt	3.5	2.3 U	2.4 U	3.9
iron	14600 J	8120	12500 J	20700 J
Lead	16.9	11.9	5.1	5.5
Magnesium	1690	618	4420	6060
Manganese	40.2	26	43.4	47.8
Mercury	0.4	0.36	0.23	0.26
Nickel	5.7	3.8	8.1	11.4
Potassium	739 Uar	508 U	1410	1590
Thallium	0.3 U	0.21 U	0.24	0.32 U
Vanadium	21	11.9	21.4	31
Zinc	52	27.8	28.3	27.2

j

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SEDIMENT - PESTICIDES AND PCBs

.

BAKER I.D. LABORATORY I.D. DATE COLLECTED UNITS	WC-SD02-06 5243-10 06-MAY-1994 ug/kg	WC-SD02-612 5232 06-MAY-1994 ug/kg	WC-SD03-06 5235 07-MAY-1994 ug/kg	WC-SD03-612 5234 07-MAY-1994 ug/kg
delta-BHC	5.2 U	0.79 J	3.7 U	5.4 U
Aldrin	1.2 J	3.9 U	3.7 U	5.4 U
Dieldrin	3.7 J	7.5 U	7.1 U	10 U
4,4'-DDE	16	7.5 U	7.1 U	10 U
4,4'-DDD	12	7.5 U	7.1 U	10 U
4,4'-DDT	2.6 J	1.1 J	0.76 J	10 U

. . .

i

)

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SEDIMENT - SEMIVOLATILE ORGANIC COMPOUNDS

;

BAKER I.D.	WC-SD02-06	WC-SD02-612	WC-SD03-06	WC-SD03-612
LABORATORY I.D.	5243-10	5232	5235	5234
DATE COLLECTED	06-MAY-1994	06-MAY-1994	07-MAY-1994	07-MAY-1994
UNITS	ug/kg	ug/kg	ug/kg	ug/kg
Benzo(a)pyrene	1000 U	688 U	714 U	544 J

MARINE CORPS BASE CAMP LEJEUNE ANALYTICAL SUMMARY OF RESULTS BACKGROUND - WEBB CREEK SEDIMENT - VOLATILE ORGANIC COMPOUNDS

BAKER I.D.	WC-SD02-06	WC-SD02-612	WC-SD03-06	WC-SD03-612
LABORATORY I.D.	5243-10	5232	5235	5234
DATE COLLECTED	06-MAY-1994	06-MAY-1994	07-MAY-1994	07-MAY-1994
UNITS	ug/kg	ug/kg	ug/kg	ug/kg

NO VOLATILE ORGANIC COMPOUNDS WERE DETECTED

ł

Field Chemistry Results

Sample	Sample	Salinity	Conductivity	DO	pH	Temperature
Identification	Location	(ppt)	(micromhos/cm)	(mg/L)	(S.U.)	(deg. C)
HC01-SW/SD-	surface	0	13.5	7.7	6.89	17
FS/BN	bottom	NA	NA	NA	NA	NA
HC02-SW/SD	surface	0.8	1,810	5.9	6.71	16.1
	bottom	15.5	21,900	1.0	6.73	18.2
HC02-FS/BN	surface	0.3	1,200	NA	NA	20.5
	bottom	13.1	20,900	NA	NA	22
	surface	0	720	7.3	7.2	15.5
	bottom	10.5	17,200	1	6.7	20
	surface	0	1,050	NA	NA	20.5
	bottom	16.5	22,800	NA	NA	21
HC03-SW/SD	surface	17	25,500	12	7.79	17.5
	bottom	NA	NA	NA	NA	NA
HC03-FS/BN	surface	17.9	26,500	NA	7.69	17.8
	bottom	NA	NA	NA	NA	NA
HC04-SW/SD-	i surface	0	65	5.3	6.16	17.3
FS/BN	bottom	NA	NA	NA	NA	NA
HM01-SW/SD-	surface	0	140	8.0	6.9	17.5
FS/BN	bottom	NA	NA	NA	NA	NA
HM02-SW/SD	surface	: 24	36,000	11.8	7.9	17.2
	bottom	25	38,000	11.6	7.6	17.6
HM02-FS/BN	surface	21	29,000	7.75	NA	21
	bottom	19	27,000	7.75	NA	20
	surface	2	3,810	NA	NA	19
	bottom	3.75	6,000	NA	NA	19.5
	surface	1	2,490	5.8	б.85	15.5
	bottom	1.1	2,700	5.0	6.72	15.2
HM03-SW/SD	surface	13.5	19,000	3.4	6.81	17.8
	bottom	NA	NA	NA	NA	NA
HM03-FS/BN	surface	22	32,000	10.8	7.90	17.5
	bottom	NA	NA	NA	NA	NA

FIELD CHEMISTRY FROM BIOLOGICAL SAMPLES HADNOT CREEK, HOLLAND MILL CREEK, AND WEBB CREEK MCB CAMP LEJEUNE, NORTH CAROLINA

.

,

Sample	Sample	Salinity	Conductivity	DO	pH	Temperature
Identification	Location	(ppt)	(micromhos/cm)	(mg/L)	(S.U.)	(deg. C)
WC02-SW/SD	surface	4.5	9,000	9.0	7.48	21
	bottom	5.5	9,000	7.0	7.48	20.5
	surface	. 0	975	5.1	7.08	17.5
	bottom	0	1,250	4.4	7.15	17.5
WC02-FS/BN	surface	0	850	5.5	6.98	20.5
	bottom	7	10,500	6.1	6.85	21
WC03-SW/SD	surface	10	16,500	10	7.33	23
	bottom	10	16,500	8.5	7.36	22.4
WC03-FS/BN	surface	12	17,200	9.1	7.43	20
	bottom	12.8	18,000	9.6	7.56	19

ppt = parts per thousand S.U. = Standard Units

NA = Not Analyzed

Sample Location = Water surface or water bottom DO = Dissolved Oxygen level

:

:

FS = Fish sample BN = Benthic Macroinvertebrate sample SW/SD = Surface water/sediment sample

Positive Detection Summary Fish Fillet Tissue Analysis

MARINE CORPS BASE CAMP LEJEUNE BACKGROUND - HADNOT CREEK POSITIVE DETECTIONS SUMMARY FISH FILLET TISSUE SAMPLES

	HC1A-RD (Red Drun		HC1A-SF (Southerr Flounder)	1	HC1A-LB (Largemo Bass)		HC1A-LBI (Largemou Bass)		HC1A-LB0 (Largemon Bass)		HC1A-BCA (Blue Crab)		HC1A-BC/ (Blue Crat		HC1A-GA (Longnos Gar)		HC1A-GI (Longnos Gar)	
Parameter	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)	
Volatiles																		
Acetone	0.13	J	0.056	J	0.077	J	0,07	J	0.037	J	0.11	J	0.099	J	0.028	J	0.016	J
Methylene Chloride	0.041		0.013	В	0.017	В	0.016	В	0.003	В	0.011	В	0.022	В	0.004	В	0.015	В
Semivolatiles									.		·							
Phenol	ND		0.46		ND		2.1		1.6		ND		ND		ND		ND	
Di-n-octyl phthalate	ND		0.40 ND		0.061	J	ND		0.085		ND		ND		0.29	J	0.5	J
Bis(2-ethylhexyl)phthalate	1.1	в	0.82	в	3.6	В	3.2	в	4.8	в	ND		ND		11	J	17	J
DistErentymerynprinalate			0.02														<u>''</u>	
Pesticides/PCBs																		
4,4'-DDD	ND		ND		ND		ND		ND		0.0066		0.0056		ND		ND	
4.4'-DDE	ND		ND		ND		ND		ND		0.0087		0.0046		0.012		0.0097	
alpha-Chlordane	ND		ND		ND		ND		0.00017	Ρ	0.0018		0.0012		ND		ND	
Aroclor-1260	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Inorganics																		
Aluminum	ND		ND		ND		36.5		ND		ND		ND		ND		ND	
Arsenic	0.7	L	0.82		0.34	L	0.37	L	0.36	K	0.68		0.39		2.5		3.9	L
Barium	ND		ND		ND		ND		ND		ND		10,1		ND		ND	
Cadmium	ND		ND		ND		ND		ND		0.14		0.11	J	ND		ND	
Calcium	154		271		528		684		1170		4480		32200		493		520	
Chromium	0.38	L	ND		0.23	L	0.68	L	0.63	L	ND		0.52	L	0.32	L	0.21	Ļ
Copper	0,3	J	0.18	J	0.2	J	0.24	J	0.28	J	7.9		5.8		0.46	J	0.18	J
Iron	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Lead	ND		ND		ND		ND		ND		ND		ND		ND		ND	
Magnesium	285		254		298		292		319		591		1800		286		300	
Manganese	0.13		0.38		0.09	J	0.09	J	0.08	J	1.8		13.6		0.24	J	0.21	J
Mercury	0.07		0.05		0.22		0.24		0.17	Κ	0.08		0.02	J	0.22		0.14	
Nickel	ND		ND		ND		ND		ND		ND		ND		0.45	L	ND	
Potassium	3930		3700		3740		3610		4040		2170		1860		3410		3270	
Sodium	1060		607		505		580		529		4060		4270		623		523	
Zinc	5		5		3.9		4.4		4.6	L	25		17.9		6.5		4.6	

÷

Fish Distribution and Characterization

ł

FISH DISTRIBUTION AND CHARACTERIZATION BACKGROUND STATIONS - WEBB, HADNOT, AND HOLLAND MILL CREEKS

ī

MCB CAMP LEJEUNE, NORTH CAROLINA

Common Name	Scientific Name	Length N.C. (cm)	Length Atlas (cm)	Water Type	Habitat	Spawning	Tolerance	Family	Sources
Atlantic Menhaden	Brevoortia tyrannus	20	46	Brackish or marine, enters freshwater	Rivers, streams	ŃA	Intermediate	Clupeidae	1,2,3,4
Spot	Leiostomas xanthurus	NA	NA	Brackish or marine, enters freshwater	NA	NA	NA	Sciaenidae	1
Stripped Mullet	Mugil cephalus	NA	23-35	Brackish or marine, enters freshwater	Rivers	NA	NA	Mugilidae	1,2
Pinfish	Lagodon rhomboides	NA	38	Marine, seldom enters freshwater	Shallow waters	NA	NA	Sparidae	1,2
Mud Catfish (Yellow Bullhead)	<u>Ictalupus natalis</u>	24	-38	Freshwater	Rivers Streams	April through May	Tolerant	Ictaluridae	1,2,3
Redbreast Sunfish	Lepomis auritus	18	6-15	Freshwater	Streams	April through June	NA	Centrarchidae	1,2,3
Atlantic Croaker	<u>Micropogonias undulatus</u>	NA	61	Estuaries, brackish- water or marine	NA	NA	NA	Sciaenidae	1,2
Pumpkinseed	Lepomis gibbosus	20	8-20	Freshwater	Streams Creeks	April through October	Moderately Tolerant	Centrarchidae	1,2,3,4
Longnose Gar	Lepisosteus osseus	80	-150	Freshwater; May enter brackish water	Rivers	April through May	Intermediate	Lepisosteidae	1,2,3
Summer Flounder	Paralichthys dentatus	NA	37	- Brackich or marine, enters freshwater	Rivers	NA	·NA-,,	Bothidae	1
Flier	Centrarchus macropterus	12	7-19	Freshwater	Streams	April through May	NA	Centrarchidae	1,2,3
Chain Pickerel	Esox niger	44	38-45	Freshwater	Streams Creeks	February through March	Intermediate	Esocidae	1,2,3

)

FISH DISTRIBUTION AND CHARACTERIZATION BACKGROUND STATIONS - WEBB, HADNOT, AND HOLLAND MILL CREEKS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

1

Common Name	Scientific Name	Length N.C. (cm)	Length Atlas (cm)	Water Type	Habitat	Spawning	Tolerance	Family	Sources
Redear Fish	Lepomis microlophus	18	14-25	Freshwater	Streams	May through August	Intermediate	Centrarchidae	1,2,3
Warmouth .	Lepomis gulosus	16	8-26	Freshwater	Rivers Streams	May through August	Intermediate	Centrarchidae	1,2,3
White Perch	Morone americana	NA	to 48	Brackish water; Freshwater	Bays and estuaries; Rivers and lakes	ŇA	Intermediate	Percichthyidae	3,5
Bluefish	<u>Pomatomus saltatrix</u>	NA	NA	Coastal waters	Surface waters; Near shore and off shore	NA	NA	Pomatomidae	2
Bluegill	Lepomis macrochirus	25	18-20	Freshwater	Rivers Streams Creeks	May through October	Intermediate	Centrarchidae	1,2,3
White Catfish	Ictalurus catus	31	-46	Freshwater	Rivers	May through June	Intermediate	Ictaluridae	1,2,3
Largemouth Bass	Micropterus salmoides	48	12-70	Freshwater	Rivers Streams Creeks	May through June	Intermediate	Centrarchidae	1,2,3
Mummichog	Fundulus heterclitus	7	8-10	Shallow coastal waters	Rivers Streams	April through August	NA	Cyprinodontid &e	1,2,3
Redfin Pickerel	Esox americanus	23	25-30	Freshwater	Streams Creeks	February through March	NA	Esocidae	1,2,3
Hog Choker	<u>Trinectes maculatus</u>	5	7-12	Shallow coastal waters; Occasionally enters freshwater	Rivers Streams	March through April	NA	Soleidae	1,2,3

FISH DISTRIBUTION AND CHARACTERIZATION BACKGROUND STATIONS - WEBB, HADNOT, AND HOLLAND MILL CREEKS REMEDIAL INVESTIGATION, CTO-0232 MCB CAMP LEJEUNE, NORTH CAROLINA

Common Name	Scientific Name	Length N.C. (cm)	Length Atlas (cm)	Water Type	Habitat	Spawning	Tolerance	Family	Sources
Pirate Perch	Aphredoderus sayanus	9	7-14	Freshwater	Streams Creeks	January through March	Intermediate	Aphredoderida e	1,2,3
Eastern Mosquito (Mosquitofish)	<u>Gambusia affinis</u>	NA	NA	Fresh or brackish water	Ponds, lakes, ditches, backwaters, sluggish streams	NA	Intermediate	Poeciliidae	2,5

ŧ

1 Menhinick, 1992.

٤

2 Boschung, 1983.

3 USEPA, 1989d.

4 Raasch, 1991.

5 Kennish, 1986.

NA = Information not Available

TOTAL NUMBER AND PERCENT OF AQUATIC SPECIES IDENTIFIED PER AREA WEBB CREEK AND HADNOT CREEK

MCB CAMP LEJEUNE, NORTH CAROLINA

SPECIES	WEBB	CREEK	Total		HADNOT CREEK					
or hereb	WC02	WC03	Detected	HC01	HCO2	HC03	HC04	Detected		
FISH SPECIES										
Spot	4		4			12		12		
Stripped Mullet	4		4		<u> </u>	3		3		
Pumpkinseed			0		3			3		
Mudcat	3	1	3	3	· ·			3		
Redbreast sunfish	1		1	2	1	1		2		
Long-Nosed Gar	9	5	14				•	0		
American flier			0	3				3		
Chain pickerel	1		0	1				1		
Redear fish			0	1				1		
Atlantic croaker			0			5		5		
Warmouth			0		1			1		
Bluefish			0			3		3		
Yellow Bullhead	3		3	2			-	2		
Blue gill	4		4		1			0		
White catfish	1		1					0		
Largemouth bass	2		2		ur tant	1		0		
Summer flounder		1	1			1		0		
Mummichog	1	3	3		1			0		
Pinfish	25	24	49			5		5		
Atlantic menhaden			0			2	1	2		
Redfin pickerel			0				2	2		
White perch			0			1		1		
Hog choker	-		0			1		1		
Pirate perch		1	0				8	8		

TOTAL NUMBER AND PERCENT OF AQUATIC SPECIES IDENTIFIED PER AREA WEBB CREEK AND HADNOT CREEK

1

SPECIES	WEBB	CREEK	Total		Total			
STECIES	WC02	WC03	Detected	HC01	HCO2	HC03	HC04	Detected
NO. OF SPECIES	9	4	12	5	2	8	2	18
NO. OF INDIVIDUALS	53	33	86	10	4	32	10	56
OTHER AQUATIC SPECIES						· ·		
Grass shrimp		3	3				1	0
Crayfish			0				3	3
NUMBER OF SPECIES	0	1	1	0	0	0	1	- 1
NO. OF INDIVIDUALS	0	3	3	0	0	0	3	3

MCB CAMP LEJEUNE, NORTH CAROLINA

TOTAL NUMBER AND PERCENT OF AQUATIC SPECIES IDENTIFIED PER AREA HOLLAND MILL CREEK

SPECIES	HOL (CAI	Total Detected		
	HM01	HM02	HM03	-
Spot			8	8
Stripped Mullet		11	3	14
Pumpkinseed	16	2		18
Chain pickerel	2			2
Swamp darter	6			6
Mud sunfish	1			1
Black drum		1		1
Ligar		3		3
Gizzard Shad		2		2
Spotted sunfish		2		2
Blue gill	2	1		3
Atlantic menhaden			199	199
Largemouth bass		1 .	·	1
Hog choker			2	2
Summer flounder		1	17	18
Mummichog		6		6
Pinfish	1	7	4	11
Goby, freshwater	1	1	-	2
NUMBER OF SPECIES	6	12	6	18
NO. OF INDIVIDUALS	28	38	233	299

MCB CAMP LEJEUNE, NORTH CAROLINA

TOTAL NUMBER AND PERCENT OF AQUATIC SPECIES IDENTIFIED PER AREA HOLLAND MILL CREEK

SPECIES	1	HOLLAND MILL CREEK (CARTWHEEL BRANCH)							
	HM01	HM02	HM03	-					
OTHER AQUATIC SPECIES									
Unknown	1			1					
Grass shrimp		13		13					
Crayfish	3			3					
NUMBER OF SPECIES	2	1	0	3					
NO. OF INDIVIDUALS	4	13	0	17					

ł

MCB CAMP LEJEUNE, NORTH CAROLINA

HADNOT CREEK - BACKGROUND STATIONS

1 SPECIES	COC SAMPLE NO.	HC01 Fish Length (cm)	Mass Welght	Average Welght (g)	HC02 Fish Length (cm)	Mass Weight	Average Welght (g)	HC03 Fish Length (cm)	Mass Weight	Average Weight (g)		HC04 Fish Length (cm)	Mass Weight	Average Weight (g)
Strippet Mullet	НСОЗ							15.25 12.5 12.5		45 20 20	45 20 20			
	COUNT						<u> </u>	3			3			
	AVERAGE MAXIMUM							13.416666667 15.25		28.3333	33333 45			
	MINIMUM							12.5			20			
Atlantic Menhaden	HC03							+1 collected,		or weight				
									<5		2.5			
	COUNT							2			2			
	AVERAGE MAXIMUM							5			2.5			
	MINIMUM							5			2.5			
	MINIMUM							5			2.5			
Blue Fish	НСОЗ							-			-			
	1000							7		7 17	7 17			
								8		8	8			
	COUNT													
	AVERAGE							3			3			
	MAXIMUM							8.6666666667 11		10.6668				
	MINIMUM							7			17 7			
								•			. '			
Spot	HC03							12.5		22	22			
									<5.0		2.5			
			•						<5.0		2.5			
									<5.0		2.5			
								3.5	<5.0		2.5			
								5.5	<5.0		2.5			
								14		40	40			
								13.5		35	35			
								12		35	35			
								14		35	35			
								5.5 11.5	<5.0	20	2.5 20			
	COUNT		<u> </u>											· · · · · · · · · · · ·
	AVERAGE							12 9.0208333333		16.83333	12			
	MAXIMUM							14		10.0000	40			

ł

HADNOT CREEK - BACKGROUND STATIONS

SPECIES	I COC SAMPLE NO.	HC01 Fish Length (cm)	Mass Weight	Average Weight (g)	HC02 Fish Length (cm)	Mass Weight	Average Weight (g)	HC03 Fish Length (cm)		Mass Weight		Average Weight (g)		HCO4 Fish Length (cm)	Mass Weight	Average Weight (g)
White Perch	HC03								18.5	1	05		105			
	COUNT		·						1				1			
	AVERAGE								18.5				105			
	MAXIMUM								18.5				105			•
	MINIMUM								18.5				105			
Hogchoker	HC03								5.5		5		5		•	
	COUNT															
	AVERAGE								1 5.5				1 5			
	MAXIMUM								5.5				5			
·	MINIMUM								5.5				5			
Pinfish	HC03												4E			
	nuus								13 10.8		35 25		35 25			
									11		22		22			
									10.5		25		25			
									13		37		37			
	COUNT					· ·····			5				5			
	AVERAGE								11.66				28.8			
	MAXIMUM								13				37			
	MINIMUM								10.5				22			
Adaptic Creation	HC02										~		~			
Atlantic Croaker	HC03								11,5 10,5		20 16		20 16			
									9		10		10			
									10.5		14		14			
									7.5	<5			2.5			
	COUNT								5				5			
	AVERAGE								9.8				12.5			
	MAXIMUM								11.5				20			
	MINIMUM								7.5				2.5			
Redbreast Sunfish	HC01	23.5	265	i 26	5											
Redbreast Sunfish	HC01	23.5 20														
Redbreast Sunfish	COUNT	20	175	i 17:				-								
Redbreast Sunfish	COUNT	20 2 21.75	175	i 17 22	5 2 0			-								
Redbreast Sunfish	COUNT AVERAGE MAXIMUM	20 2 21.75 23.5	175	i 17: 	5 2 0 5		17-11, , , , , , , , , , , , , , , , , , ,									
Redbreast Sunfish	COUNT	20 2 21.75	175	i 17 22	5 2 0 5											
	COUNT AVERAGE MAXIMUM MINIMUM	20 2 21.75 23.5 20	175	22 26 17	5 2 0 5 5											
	COUNT AVERAGE MAXIMUM	20 2 21.75 23.5 20 16.5 9.5	175 65	i 17: 22 26 17: i 6 i 1:	5 2 0 5 5 5										<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Redbreast Sunfish American Flyer	COUNT AVERAGE MAXIMUM MINIMUM HC01	20 21.75 23.5 20 16.5 9.5 + 1 collecte	175 65 18 od, no length	i 17: 22 26 17: i 6: i 1: or weight	5 2 5 5 5			- 								
	COUNT AVERAGE MAXIMUM MINIMUM	20 2 21.75 23.5 20 16.5 9.5 +1 collecte 3	175 65 18 ed, no length	5 17 22 26 17 5 6 5 1 1 0 cr weight	5 2 0 5 5 5 5 5 3											
	COUNT AVERAGE MAXIMUM MINIMUM HC01 COUNT	20 21.75 23.5 20 16.5 9.5 + 1 collecte	175 65 15 ed, no length	i 17: 22 26 17: i 6: i 1: or weight	5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							<u></u>				

ŧ

HADNOT CREEK -	LOUND STATIONS								.).				
SPECIES	COC SAMPLE NO.	HC01 Flah Length (cm)	Mass Weight	Average Weight (g)	HC02 Fish Length (cm)	Mass Weight	Average Weight (g)	HC03 Fish Length (cm)	Mass Weight	Average Weight (g)	HC04 Fish Length (cm)	Mass Weight	Average Welght (g)
Chain Pickerel	HC01	37	290	290									
	COUNT	1		. 1								•	····-
	AVERAGE	37		290									
	MAXIMUM	37		290									
	MINIMUM	37		290									
Yellow Bullhead	HC01	26.5 26.5											
	COUNT	2		2				·					
	AVERAGE	26.5		272.5									
	MAXIMUM	26.5		275									
	MINIMUM	28.5		270									
Pumpkinseed	HC02				13 17.5 10	125	12	5					
	COUNT				3			1					
	AVERAGE				15.5		91.66666						
	MAXIMUM				17.5		12						
•	MINIMUM				13		50						
Warmouth	HC02				22	250	250)					
	COUNT				1		1	1					·····
	AVERAGE				22		250						
	MAXIMUM				22		250						
	MINIMUM				22	!	250	0					
Red/in Pickerel	HC04												gth or weight 10 30
	COUNT				· · · · · ·							2	2
	AVERAGE											7	30
	MAXIMUM											7	30
	MINIMUM										,	7	30
Pirate Perch	HC04											5 >5	2.5
											4.		2.5
	COUNT												gth or weight
	AVERAGE										4.7	8	8
	MAXIMUM											5 5	2.5 2.5
	MINIMUM										4,		2.5
O., F.L	11004												
Crayfish	HC04												0 3.3
											4.	5 4	3.3
	• <u>•</u> ••••••••••••••••••••••••••••••••••									<u></u>			3.3
	COUNT											3	3
	AVERAGE MAXIMUM										4,833333		3.3 3.3
	MINIMUM											6 4	3.3
												7	0,0

ł

3 collected at HC01, no length or weight Mudcat

SPECIES	COC SAMPLE NO.	HM01 Fish Length (cm)	Mass Weight	Average Weight (g)	HM02 Fish Length (cm)	Mas Weig		Average Weight (g)	HM03 Fish Length (cm)	Mass Weight	Average Weight (g)
trippet Mullet	HM02			• •	33	.5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	640 600 400 360 340 460 520 410 320	640 500 400 380 340 480 520 410 320			<u></u>
	HM03				1	n	370	370	14.5	40	40
	1100								6.5	<5 ed, no lengt	2.5
	COUNT					1		11	3		:
	AVERAGE MAXIMUM				34.8181818 39		·	438.1818182 640	10.5 14.5		21.2 4(
	MINIMUM					1		320	6.5		2.5
lantic Menhaden	HM03								6	24	
	111100								8 5.7		
									5.4		
									5.5 5.6		
									5.7 5.5	22	
									5		2.2
									5.5 5.5		22
									5.2 5.5		2.2
									5.5		2.2
									5.6 6.2		2.2 2.2
									6 5.5	25	2.5 2.5
									5		2.5
									5.5 5.5		2.5 2.5
									5.5 6		2.5 2.5
									5 5.5		2.5
									5.5	20	25
									5.7 5		2
									5 6		2
									5.5		2
									5.5 6		2
									6 5.5		2
									5.5	27	1.8
									5.8 5.5		1.8 1.8
									5.7 6		1.8 1.8
									6		1,8
									6.5 5.5		1.8 1.8
									6.5 5.5		1.8 1.8
									5.5		1.8
									5.5 6		1.8 1.8
									5.5 5.5		1.8 1.8
									5.5 4.5	20	2
									5		2
							•		5.5 5.5		2
									5.5 5.5		2
									6		2
									5.5 6		2
-									6	ed no lengt	2
	COUNT								199		61
	AVERAGE								5.6		2.2540984
	MAXIMUM MINIMUM								6.5 4.5		4 1.8

Flounder Black Drum	HM02 HM03 COUNT AVERAGE MAXIMUM MINIMUM	NAME AND A DESCRIPTION OF A			29.	5	250	250	33 43 20,5	400 850 94	0
	COUNT AVERAGE MAXIMUM								43	85	0
	AVERAGE MAXIMUM										0
	AVERAGE MAXIMUM								20,5		
	AVERAGE MAXIMUM		<u> </u>								-
	AVERAGE MAXIMUM		· · · · · · · ·						24	12	0
	AVERAGE MAXIMUM								+13 collecte	ed, no lengti	h or weig
	MAXIMUM					1		1			
					29.			250	30.125		
	MINIMUM				29.			250	43		
	• •				29.	5		250	20.5		
Slack Drum											
	HM02				2	s :	350	350			
										•	
	COUNT					1		1			
	AVERAGE				2			350			
	MAXIMUM				2			350			
	MINIMUM				2	,		350			
potted Sunfish	HM02				15.	5	6 5	65			
					1	7 1	110	110			
	COUNT					2		2			
	AVERAGE				16.2			87.5			
	MAXIMUM MINIMUM				1 15.1			110 65	•.		
argemouth Bass	HM02				3	4 E	540	540			
	COUNT	· · · · ·				1		1			
	AVERAGE				3			540			
	MAXIMUM MINIMUM				3- 3-			540 540			
iogchoker	HMO3								+1 collected	f, no length 10	-
NGCI NINE											
	COUNT								2		
	AVERAGE								6		
	MAXIMUM								6		
	MINIMUM								6		
pot	HM03								5	<5	
									12	25	5
									5.8	20)
									6		
									6.2		
									6.4 6.4		
									+1 collected	, no lenath	or weich
	COUNT								8		
	AVERAGE								6.82857143		6.7857
	MAXIMUM								12		
	MINIMUM								5		
	HUGA										
hua Citt	HM02				17			105			
lue Gill	HM01	40.5	; 44	o ••	1						
iue Gill	HM01	10.5		o so weight	0						
lue Gill	COUNT		ed, no length		1 1			1			
łue Gill		+1 collecte	ed, no length 2 5	or weight	1 1 D 17	,		1 105 105			

SPECIES	COC SAMPLE NO.	HM01 Fish Length (cm)	Mass Weight	Average Welght (g)	HM02 Fish Length (cm)	Mats Weight	Average Weight (g)	HM03 Fish Length (cm)	Mass Weight	Average — Weight (g)
Pumpkinseed	HM02				15 11.5					
	HM01	7.5	45	4,5		30	. 30			
		7.5		4.5						
		. 6		4.5						
		6		4.5						
		· 4.5 8.5		4.5 4.5						
		8		4.5						
		5.5		4.5						
		8	50	8.3 8.3						
•••		8.5 6.5		6.3						
		8.5		8.3						
		11		8.3						
		7.5		5.3						
	COUNT	16		16	2		2			
	AVERAGE	7.34375		5.925	13.25		40			•
	MAXIMUM MINIMUM	11 4.5		8.3 4.5	15 11.5		50 30			
		-22		4.5		•				
Long-nose Gar	HM02				73 83	1250 2000	1250 2000			
					72.5	1640	1640			
										· · · · · · · · · · · · · · · · · · ·
	COUNT				3		3			
	AVERAGE MAXIMUM				76.16666667 83		1630 2000			
	MINIMUM				72.5		1250			
Pinfish	HM02				17.5	80	80			
8-02100-00F1	HM02					~		5	<5	2.5
					+6 collected,	no length or		+3 collected	i, no lengt	
	COUNT				7		1 80	4		1
	AVERAGE MAXIMUM				17.5		80	5 5		2.5 2.5
	MINIMUM				17.5		80	5		25
Gizzard Shed	HM02				33	480	480			
					34	460	460			
	COUNT				2 33.5		2 470			
	MAXIMUM				34		480			
	MINIMUM		N.		33		460			
Chain Pickerel	HM01	13	10	5						
		13.5		5						
	COUNT									
	COUNT AVERAGE	2 13.25		2						
	MAXIMUM	13.5		5						
	MINIMUM	13		5						
Unknown Fish	HM01	7.5	<5	2.5						
										··
	COUNT	1 7.5		1 2.5						
	MAXIMUM	7.5		2.5						
	MINIMUM	7.5		2.5						
Swamp Darler	HM01	6	18	3						
		6		3						
		6		3						
		6		3						
		6		3						
-										
	COUNT	6		6						
	AVERAGE MAXIMUM	6		3					•	
	MINIMUM	6 6		3						
		2								

. .

SPECIES	COC SAMPLE NO.	HM01 Fish Length (cm)	Mass Weight	Average Weight (g)	HM02 Fish Length (cm)	Mass Weight	Average Weight (g)	ĤM03 Fish Length (cm)	Mass Weight	Average Weight .(9)
Crayfish	HMO1	8.5 4.5 5.5	15		5					
	COUNT AVERAGE MAXIMUM MINIMUM	3 6.16666667 8.5 4.5		4 4 4	5			•		

Goby, freshwater	1 collected at HM01 and 1 collected at HM02, no length or weight
Mummichog	6 collected at HM02, no length or weight
Mud Sunfish	1 collected at HM01, no length or weight

,

Gras shrimp

13 collected at HM02, no length or weight

WEBB CREEK - BACKGROUND STATIONS

SPECIES	COC SAMPLE NO.	WC02 Fish Length (cm)	Mass Weight	Average Weight (9)	WC03 Fish Length (cm)		Mass Weight	Average Weight (g)	
Strippet Mullet	WC02	39.5	500	500					
		35.5	380	380					
	•	41.5	700						
		37	600	600					
		37	600	600					
	001017								· · · · · · · · · · · · · · · · · · ·
	COUNT	4		4					
	AVERAGE	38.375		545					
	MAXIMUM	41.5		700					
	MINIMUM	35.5		380					
Summer Rounder	WC03					21	60		60
	COUNT					1			1
						21			
	AVERAGE							1	60 ~~~
	MAXIMUM					21			60
	MINIMUM					21			60
			505	525					
Largemouth Bass	WC02	34 34	525 600	525 600					
				-				· · · · · · · · · · · · · · · · · · ·	
	COUNT	2		2					
	AVERAGE	34		562.5					
	MAXIMUM	34		600					
	MINIMUM	34		525					
Redbreast Sunfish	WC02	16	60	60					
	COUNT	1		1	- <u>.</u>				·
	AVERAGE	16		60					
	MAXIMUM	16		60				•	
	MINIMUM	16		60					
White Catfish	WC02	37	750	750					
		·····							
	COUNT	1		1					
	AVERAGE	. 37		750					
	MAXIMUM	37		750					
	MINIMUM	37		750					
- ·									
Spot	WC02	14.5	10	10					
		13	10	10					
		13 +1 collected,	<10 no length or	5 weight					
	COUNT	4		4					
	AVERAGE	13.5		8.33333333					
	MAXIMUM	14.5		10					
	MINIMUM	13		5					
due Gill	WC02	23	300	300					
		23.5	300	300					
		21.5 16.75	250 85	250 85					
		·····			······				
	COUNT	4		4					
-		4 21.1875							
-	AVERAGE	21.1875 23.5		233.75 300					

WEBB CREEK - BACKGROUND STATIONS

, xes	COC SAMPLE NO.	WC02 Fish Length (cm)	Mass Weight	Average Weight (g)	WC03 Fish Length (cm)	Mass Weight	Average Weight (g)
Long-nose Gar	WC02	68	1100	1100			
LUNG-NOSE Gai	11002	71.5	1220	1220			
		73.5	1350	1350			
		72.5	1220	1220			
		66.5		1120			
		72.5	1260	1260			
		71.5	1340	1340			
		69.5	1240	1240			
		75	1420	1420			
	WC03				87	1900	
					83	1850	
					97	2850	
					71.5	1000	
					73	1580	1580
	COUNT	9		9			5
•	AVERAGE	71.16667		1252.222			1836
	MAXIMUM	75		1420			2850
	MINIMUM	66.5		1100	71.5		1000
Pinfish	WC02	10.5					
				h or weight	24 collected,	no length or	weight
	COUNT	25			24		
	AVERAGE	10.5					
	MAXIMUM	10.5					
	MINIMUM	10.5					
					:		
Yellow Bullhead	WC02	38.5	900	900			
Catfish		32.5	620	620			
		36.5	640	640			
	COUNT	3		3			
	AVERAGE	35.83333		720			
	MAXIMUM	38.5		900			
	MINIMUM	32.5		620			
			• •				
Mudcat	3 fish collected at WC02	, no length or wei	ght				

Mummichog 3 fish collected at WC03, no length or weight

Grass shrimp 3 collected at WC03, no length or weight

-

Benthic Macroinvertebrate Characterization and Statistics ••••

MARINE CORPS BASE CAMP LEJEUNE BACKGROUND - WEBB CREEK BENTHIC MACROINVERTEBRATES

	WC02-BN					
	01	02	03	01	02	03
NEMERTEA						
Anopla						
Heteronemertea						
Lineidae					-	
Micrura leidyl				· 1	2	2
ANNELIDA						
Polychaeta						
Capitellida						
Capitellidae	_					
Heteromestus filiformis	2					
Phyllodocida						
Nereidae						
Nereis succinea			1			
Spionida						
Spionidae						
Scolecolepides viridis				-		1
Terebellida						
Ampharetidae						
Hypaniola grayi		4	10			
ARTHROPODA						
Crustacea						
Amphipoda						
Gammaridae				-		
Gammarus tigrinus	10			1	1	
Insecta						
Diptera						
Chironomidae						
Chironomus decorus gr.	8	24	13	38	17	6
Procladius sp.	1	3	:	2		1
Tanytarsus sp.		2	1			
MOLLUSCA						
Bivalvia						
Veneroida						
Corbiculidae						
Polymesoda caroliniana					1	
Tellinidae	1					
Macoma tenta					1	
Total Taxa	4	4	4	4	5	4
Total Specimens	21	33	25	42	22	10
Replicate Specimens Average		26.33			24.67	
Standard Deviation	4.42531	10.5317	6.18466	18.3394	7.05691	2.38048
Brillouin's Diversity		0.518			0.279	
SPECIES DENSITY (#/M^2)	134	210	159	268	140	64
SPECIES DIVERSITY (Shannon-Wiener)	0.473	0.380	0.419	0.180	0.364	0.473

••••

	01	HC01-BN 02	8	01	HC02-BN 02	8	01	HCO3-BN Q2	8	01	HC04-BN 02	8
THIEA	1								<u> </u>			<u> </u>
pha rieleronemeries												
Linekine							-					
Micrum loidyt						•	5	3				
Oligocheste												
Lumbriculida Lumbriculina	1											
Eclipidrillus ap.			1									
Tubificida	1											
Tublicidae Inochaettica freyi	77	42	36							21	21	•
Linnadrilus hattmaistori											1	
Spirosporma carolinonsis Polychaola		3									1	3
Capitollida												
Capitalidae							14	,				
Heteromestus filiformis Phyliodocide			1					•				
Nereiden							-					
Norois succinos Phyliodocidae							•		10			
Eteone heteropode	1								•			
Torobolida Arapharotidae												
Ampharetidue Hypaniola grayi (ampharetid worm)	1			18		46						
ARTHROPODA												
Crustaces Amphipoda	1											
Comphiles	1											
Corophium Incustre									82			
Germanidae Crangonyx pseudogreciilus]		1	1					15	20
Germanus tigrinus			1									
Tanaidacea Tanaidae	1											
Leptochelin mpox									80			
Insects	1											
Coleoptera Dytacidee]						
Hydroporus sp.			1							5	2	6
Elmideo Dubinaphis sp.		1										
Dipters		•										
Ceretopogonidee		-										
Palponnyis/spherromies sp. (biting midges) Chironomidee	5	7	•	l		'				1		
1 Abiabeanyis annulata	2	7	1									
Abiabesmyia rampite gr.	- +	7	•							ĺ	1	
Clinotanypus pinguie Cryptochironoraus futvus gr.	1	2	3							1	•	
Epoicledius sp.			1							1		
Glyptotendipes sp. Näotheume sp.		2	1		·							1
Persiautorborniolle nigrohaiteralis	1 1	ŝ	2	1								
Potypedilum Minoeme	3	1										
Procladius sp. (midges) Tanytarsus sp.	2	1	2	1 - E								
Tribelos lucundum	4	8	8							[9	8
Tipulidae												2
Pesudolinnophile sp. Ephemerophere				1							•	•
Epherneridae		-					1					
Hoxagonia bilinosta Mogaloptera	3	э	1				ł			1		
Sinfidae	1											
Sialia ap.	1									1		
Odonata Coonagrianidae												
Argia sp.		1					Į			1		
Libelluiidee	1										1	
Pechydiplax longipennis Trichoptera				ł						ł	•	
Polycentropodides												
Phylacentropus sp. MOLLUSCA	1	5	7							17	13	4
Birshia				1			1					
Mytilotian										1		
Mytžidee Geukensis demissa									1	1		
Veneroida				1			1			1		
Spheoriidee Pieldem casortenum		-		1			1			1		
Pisidium coortenum Tollinidae		2	1	1						1	•	
Mecoras tenta							5	19	1			
										1		
	1			1						1		
Fold Taxa	10	17	15		2	+	1	3	8		11 69	* 52
Microtel Specimens Vicate Specimens Average	102	106 35,33333	76	18	7 26.33333	54	30	31 81,33333	183	"	89 35	32
	1	9,614633	8.961824	NA		21.79448	4.330000		39.67241	9.521905	7.128687	6.047433
idend Deviation	23.50792			1								
derd Deviation Mouin's Diversity SPECIES DENSITY (#/M^2)	850	0.755	487	115	0.072 45	344	191	0.675	1166	280	0.757 440	331

يود ا

MARINE CORPS BASE CAMP LEJEUNE BACKGROUND - HADNOT CREEK BENTHIC MACROMVERTEBRATES

C

MARINE CORPS BASE CAMP LEJEUNE BACKGROUND - HADNOT CREEK BENTHIC MACROINVERTEBRATES

	н	MO1-BN	T	F	MO2-BN	T	H	MO3-BN	
	01	02	03	01	02		01	02	
IEMERTEA						1			ĺ
Anopia						1			
Heteronemertea									
Lineidae									
Micrura leidyl							3	4	2
NNELIDA			1						
Oligochaeta						1			
Tubificida						1			
Tubificidae						1			
Limnodrilus hoffmeisteri	3	1	3						
Polychaeta									
Ariciida						1			
Orbiniidae			1				3	20	8
Scoloplos fragilis							0	20	Ŭ
Capitellida	í .								
Capitellidae							1	1 .	1
Heteromastus filiformis							•	•	
Phyllodocida Nersidao									
Nereidae Nereis succinea	i			7	9	6			
			1	-	-				
Spionida Spionidae									
Streblospio benedicti						1	1		:
Terebellida									
Ampharetidae	1								
Hypaniola grayi (ampharetid worm)	ľ		1	3		2			
ARTHROPODA	1								
Crustacea	ł								
Decapoda	l								
Palaemonidae	l l		1			1			
Palaemonetes pugic			1			1			
Insecta	1								
Coleoptera									
Dytiscidae	l								
Hydroporus sp.	1								
Elmidae	1								
Dubiraphis sp.			8						
Diptera									
Chaoboridae									
Chaoborus sp.			1						
Chironomidae									
Ablabesmyia mallochi	1 2	2	2	120	180	76	1		
Chironomus decorus gr.	5	~	3	120	100		•		
Dicrotendipes nervosus	5		1					;	
Larsia sp.	12		. 7						
Polypedilum illinoense Polypedilum scalaenum	18		11						
	11		12						
Tanytarsus sp. Tribelos lucundum	50	159	31						
	1					2			
Megaloptera Sialidae	· ·								
Sialis sp.	1								
MOLLUSCA	1								
Bivalvia									
Veneroida	1								
Mactridae									
Mullinia lateralis				1			3		
Tellinidae				ł					
Macoma tenta							17	23	9
									-
Total Taxa	10	з	10	3	2	4	- 7	4	4
Total Specimens	104	162	79	130	189	85	29	48	20
Replicate Specimens Average		115			134.667			32.3333	
Standard Deviation	15.0864	90.934	9.06091	66.4254	120.915	36.5639	5.75698	11.1056	4.0824
Brillouin's Diversity	1	0.5			0.122		l	0.497	
SPECIES DENSITY (#/M ^ 2)	663	1033	504	829	1205	542	185	306	127
SPECIES DIVERSITY (Shannon-Wiener)	0.695	0.045	0.793	0.138	0.083	0.186	0.593	0.436	0.480

*

SUMMARY STATISTICS OF BENTHIC MACROINVERTEBRATE SPECIES AT HADNOT CREEK, HOLLAND MILL CREEK, AND WEBB CREEK MCB CAMP LEJEUNE, NORTH CAROLINA

Station	Number of Species	Number of Organisms	Species Density (#/m²)	Species Diversity (Shannon- Weiner)	Species Diversity (Brillouin's)	Macroinvertebrate Biotic Index
WC02	7	79	504	0.570	0.518	9.4
WC03	7	74	472	0.323	0.279	9.6
HC01	20	286	1,823	0.802	0.755	7.8
HC02	. 4	- 79	504	0.196	0.072	7.6
HC03	8	244	1,555	0.683	0.675	NA
HC04	13	165	1,052	0.807	0.757	7.6
HM01	13	345	2,199	0.525	0.500	6.9
HM02	4	404	2,575	0.128	0.122	9.6
HM03	7	97	618	0.538	0.497	9.6

WC = Webb Creek Stations

HC = Hadnot Creek Stations

HM = Holland Mill Creek Stations

BN = Benthic Macroinvertebrate Sample

NA = Not Applicable

Species Density $(\#m^2)$ is based on a sample area of 0.0523 m².

Species	USEPA ⁽¹⁾ Metals
NERMERTEA	Phylum
Anopla	Class
Heteronemertea	Order
Lineidae	Family
Micrura leidyl	Genus Species
ANNELIDA	Phylum
Oligochaeta	Class
Lumbriculida	Order
Lumbriculiae	Family
Eclipidrillus sp.	Genus Species
Tubificida	Order
Tubificidae	Family
Isochaetides freyi	Genus Species
Limnodrilus hoffmeisteri	Genus Species
Spirosperma carolinensis	Genus Species
Polychaeta	Class
Ariciida	Order
Orbiniidae	Family
Scoloplos fragilis	Genus Species
Capitellida	Order
Capitellidae	Family
Heteromestus filiformis	Genus Species
Phyllodocida	Order
Nereidae	Family
Nereis succinea	Genus Species
Phylicdocidae	Family
Eteone heteropoda	Genus Species
Spionida	Order
Spionidae	Family
Scolecolepides virdis	Genus Species
Streblospio benedicti	Genus Species
Terebellida	Order

Species	USEPA ⁽¹⁾ Metals
Ampharetidae	Family
Hypaniola grayi	Genus Species
ARTHROPODA	Phylum
Crustacea	Class
Amphipoda	Order
Corophiidae	Family
Corophium lacuatre	Genus Species
Gammaridae	Family
Crangonyx pseudogracillus	Genus Species
Gammarus tigrinus	Genus Species
Tanaidacea	Order
Tanaidae	Family
Leptochelia rapox	Genus Species
Decapoda	Order
Palaemonidae	Family
Palaemonetes pugio	Genus Species
Insecta	Class
Coleoptera	Order
Dytiscidae	Family
Hydroporus sp.	Genus Species
Elmidae	Family
Dubiraphia sp.	Genus Species
Diptera	Order
Ceratopogonidae	Family
Palpomyia/sphaeromias sp.	Genus Species
Chaoboridae	Family
Chaoborus sp.	Genus Species
Chironomidae	Family
Ablabesmyid annulata	Genus Species
Ablabesmyia mallochi	Genus Species
Ablabesmyia ramphe gr.	Genus Species
Clinotanypus pinguis	Genus Species
Chironomus decorus gr.	Genus Species

Species	USEPA ⁽¹⁾ Metals
Cryptochironomus fulvus gr	Genus Species
Dicrotendipes nervosus	Genus Species
Epoicladius sp.	Genus Species
Glyptotendipes sp.	Genus Species
Larsia sp.	Genus Species
Nilothauma sp.	Genus Species
Paraiauterborniella nigrohaite	Genus Species
Polypedilum illinoense	Genus Species
Polypedilum scalaenum	Genus Species
Procladius sp.	Genus Species
Tanytarsus sp.	Genus Species
Tribelos jucundum	Genus Species
Tribelos lucundum	Genus Species
Tipulidae	Family
Psuedolimnophila sp.	Genus Species
Ephemeroptera	Order
Ephemeridae	Family
Hexagenia billineata	Genus Species
Megaloptera	Order
Sialidae	Family
Sialis sp.	Genus Species
Odonata	Order
Coenagrionidae	Family
Argia sp.	Genus Species
Libelluiidae	Family
Pechydiplax longipennis	Genus Species
Trichoptera	Order
Polycentropodidae	Family
Phylacentropus sp.	Genus Species
MOLLUSCA	Phylum
Bivalvia	Class
Mytiloida	Order
Mytilldae	Family

Species	USEPA ⁽¹⁾ Metals
Geukensia demissa	Genus Species
Veneroida	Order '
Corbiculidae	Family
Polymesoda caroliniana	Genus Species
Mactridae	Family
Mullinia lateralis	Genus Species
Sphaeriidae	Family
Pisidium casertanum	Genus Species
Tellinidae	Family
Macoma tenta	Genus Species

USEPA SENSITIVITY TO METALS AND TOLERANCE TO ORGANIC WASTE AND BIOTIC INDEX FOR BENTHIC MACROINVERTEBRATE SPECIES AT BACKGROUND STATIONS (WEBB, HADNOT, AND HOLLAND MILL CREEKS) MCB CAMP LEJEUNE, NORTH CAROLINA

Species	USEPA ⁽¹⁾ Metals	Organics	NCDEHNR ⁽²⁾ Biotic Index
NERMERTEA			
Anopla			
Heteronemertea			
Lineidae			
Micrura leidyl	NA	NA	NA
ANNELIDA			
Oligochaeta			
Lumbriculida			
Lumbriculiae			
Eclipidrillus sp.	NA	NA	NA
Tubificida			
Tubificidae			
Isochaetides freyi	NA	NA	8.6
Limnodrilus hoffmeisteri	NA	5	9.4
Spirosperma carolinensis	NA	3	NA
Polychaeta			
Ariciida			
Orbiniidae			
Scoloplos fragilis	NA	NA	NA
Capitellida			
Capitellidae			
Heteromestus filiformis	NA	NA	NA
Phyllodocida			
Nereidae			
Nereis succinea	NA	NA	NA
Phyliodocidae			
Eteone heteropoda	NA	NA	NA
Spionida			,
Spionidae			
Scolecolepides virdis	NA	NA	NA
Streblospio benedicti	NA	NA	NA
Terebellida			

USEPA SENSITIVITY TO METALS AND TOLERANCE TO ORGANIC WASTE AND BIOTIC INDES FOR BENTHIC MACROINVERTEBRATE SPECIES AT BACKGROUND STATIONS (WEBB, HADNOT, AND HOLLAND MILL CREEKS) MCB CAMP LEJEUNE, NORTH CAROLINA

Species	USEPA ⁽¹⁾ Metals	Organics	NCDEHNR ⁽²⁾ Biotic Index
Ampharetidae		·	
Hypaniola grayi	NA	NA	NA
ARTHROPODA			3
Crustacea			
Amphipoda			
Corophiidae			
Corophium lacuatre	NA	NA	NA
Gammaridae			
Crangonyx pseudogracillus	NA	NA	, 7.9
Gammarus tigrinus	NA	2	i' NA
Tanaidacea			
Tanaidae			
Leptochelia rapox	NA	NA	NA
Decapoda			
Palaemonidae			
Palaemonetes pugio	NA	NA	NA
Insecta			
Coleoptera			
Dytiscidae			
Hydroporus sp.	NA	NA	8.6
Elmidae			
Dubiraphia sp.	NA	NA	5.9
Diptera			
Ceratopogonidae			
Palpomyia/sphaeromias sp.	NA	NA	7.0
Chaoboridae			
Chaoborus sp.	NA	NA	8.5
Chironomidae			
Ablabesmyia annulata	NA	1	3.5
Ablabesmyia mallochi	S	2	7.2
Ablabesmyia ramphe gr.	NA	2	NA
Clinotanypus pinguis	S	3	8.7

USEPA SENSITIVITY TO METALS AND TOLERANCE TO ORGANIC WASTE AND BIOTIC INDES FOR BENTHIC MACROINVERTEBRATE SPECIES AT BACKGROUND STATIONS (WEBB, HADNOT, AND HOLLAND MILL CREEKS) MCB CAMP LEJEUNE, NORTH CAROLINA

Species	USEPA ⁽¹⁾ Metals	Organics	NCDEHNR ⁽²⁾ Biotic Index
Chironomus decorus gr.	NA	NA	9.6
Cryptochironomus fulvus gr	NA	/ 3	6.4
Dicrotendipes nervosus	S	2	9.7
-Epoicladius sp.	NA	NA	0.0
Glyptotendipes sp.	NA	NA	9.4
Larsia sp.	NA	2	9.3
Nilothauma sp.	NA	NA	5.0
Paraiauterborniella nigrohaite	NA	NA	NA
Polypedilum illinoense	NA	3	9.0
Polypedilum scalaenum	NA	2	8.4
Procladius sp.	NA	NA	9.1
Tanytarsus sp.	NA	NA	6.7
Tribelos jucundum 💡	S	1	6.3
Tribelos lucundum	NA	NA	6.3
Tipulidae			
Psuedolimnophila sp.	NA	NA	7.2
Ephemeroptera			•
Ephemeridae	-		
Hexagenia billineata	NA	2	NA
Megaloptera			
Sialidae			
Sialis sp.	Т	4	7.2
Odonata			
Coenagrionidae			
Argia sp.	NA	NA	8.2
Libelluiidae			
Pechydiplax longipennis	NA	NA	NA
Trichoptera			
Polycentropodidae			
Phylacentropus sp.	NA	NA	6.2
MOLLUSCA			
Bivalvia			

USEPA SENSITIVITY TO METALS AND TOLERANCE TO ORGANIC WASTE AND BIOTIC INDES FOR BENTHIC MACROINVERTEBRATE SPECIES AT BACKGROUND STATIONS (WEBB, HADNOT, AND HOLLAND MILL CREEKS) MCB CAMP LEJEUNE, NORTH CAROLINA

۰.

Species	USEPA ⁽¹⁾ Metals	Organics	NCDEHNR ⁽²⁾ Biotic Index
Mytiloida			
Mytilldae			
Geukensia demissa	NA	NA	NA
Veneroida			
Corbiculidae			
Polymesoda caroliniana	NA	NA	NA
Mactridae			
Mullinia lateralis	NA	NA	NA
Sphaeriidae			
Pisidium casertanum	NA	4	6.5
Tellinidae			
Macoma tenta	NA	NA	I NA

⁽¹⁾ Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters

⁽²⁾ Lenat, 1993

NA = Not Available

S = Sensitive to heavy metals

T = Tolerant to heavy metals

Organics Ranking = 0 to 5 with 0 being the least tolerant

APPENDIX O FREQUENCY OF DETECTION SUMMARIES

APPENDIX O.1 SURFACE SOIL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-DW01-00 04/10/95 0-1'	65-DW02-00 04/09/95 0-1'	65-DW04-00 04/05/95 0-1'	65-MW05A-00 04/05/95 0-1'	65-MW06A-00 04/08/95 0-1'	65-MW07A-00 04/04/95 0-1'
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
BROMOMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
VINYL CHLORIDE	11 U	11 U	11 U	11 U	12 U	11 U
CHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
METHYLENE CHLORIDE	11 U	11 U	11 U	2 U	12 U	2 J
ACETONE	11 U	13 U	11 U	10 J	12 U	11 U
CARBON DISULFIDE	11 U	11 U	11 U	11 U	12 U	11 U
1,1-DICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
1,1-DICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
1,2-DICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
CHLOROFORM	11 U	11 U	11 U	11 U	12 U	11 U
1,2-DICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
2-BUTANONE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,1-TRICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
CARBON TETRACHLORIDE	11 U	11 U	11 U	11 U	12 U	11 U
BROMODICHLOROMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
1,2-DICHLOROPROPANE	11 U	11 U	11 U	11 U	12 U	11 U
CIS-1,3-DICHLOROPROPENE	11 U	11 U	11 U	11 U	12 U	11 U
TRICHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
DIBROMOCHLOROMETHANE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,2-TRICHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
BENZENE	11 U	11 U	11 U	11 U	12 U	11 U
TRANS-1,3-DICHLOROPROPENE	11 U	11 U	11 U	11 U	12 U	11 U
BROMOFORM	11 U	11 U	11 U	11 U	12 U	11 U
4-METHYL-2-PENTANONE	11 U	11 U	11 U	11 U	12 U	11 U
2-HEXANONE	11 U	11 U	11 U	11 U	12 U	11 U
TETRACHLOROETHENE	11 U	11 U	11 U	11 U	12 U	11 U
1,1,2,2-TETRACHLOROETHANE	11 U	11 U	11 U	11 U	12 U	11 U
TOLUENE	11 U	11 U	2 J	1 J	12 U	2 J
CHLOROBENZENE	11 U	11 U	11 U	11 U	12 U	11 U
ETHYLBENZENE	11 U	11 U	11 U	11 U	12 U	11 U
STYRENE	11 U	11 U	11 U	11 U	12 U	11 U
TOTAL XYLENES	3 J	11 U	11 U	11 U	12 U	11 U

LOCATION DATE COLLECTED	65-SB06-00 04/10/95	65-SB07-00 04/08/95	65-SB08-00 04/11/95	65-SB09-00 04/08/95	65-SB10-00 04/08/95	65-SB11-00 04/08/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
VOLATILES (ug/kg)						
CHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
BROMOMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
VINYL CHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
CHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
METHYLENE CHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
ACETONE	12 U	13 U	11 U	11 U	12 U	12 U
CARBON DISULFIDE	12 U	13 U	11 U	11 U	12 U	12 U
1,1-DICHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
1,1-DICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
CHLOROFORM	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
2-BUTANONE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,1-TRICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
CARBON TETRACHLORIDE	12 U	13 U	11 U	11 U	12 U	12 U
BROMODICHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,2-DICHLOROPROPANE	12 U	13 U	11 U	11 U	12 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	13 U	11 U	11 U	12 U	12 U
TRICHLOROETHENE	1 J	13 U	11 U	11 U	12 U	12 U
DIBROMOCHLOROMETHANE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,2-TRICHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
BENZENE	12 U	13 U	11 U	11 U	12 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	13 U	11 U	11 U	12 U	12 U
BROMOFORM	12 U	13 U	11 U	11 U	12 U	12 U
4-METHYL-2-PENTANONE	12 U	13 U	11 U	11 U	12 U	12 U
2-HEXANONE	12 U	13 U	11 U	11 U	12 U	12 U
TETRACHLOROETHENE	12 U	13 U	11 U	11 U	12 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	13 U	11 U	11 U	12 U	12 U
TOLUENE	12 U	13 U	11 U	11 U	12 U	12 U
CHLOROBENZENE	12 U	13 U	11 U	11 U	12 U	12 U
ETHYLBENZENE	12 U	1 J	11 U	11 U	12 U	12 U
STYRENE	12 U	13 U	11 U	11 U	12 U	12 U
TOTAL XYLENES	12 U	5 J	11 U	11 U	12 U	12 U

LOCATION	65-SB12-00
DATE COLLECTED	04/17/95
DEPTH	0-1'

VOLATILES (ug/kg)	
CHLOROMETHANE	11 U
BROMOMETHANE	11 U
VINYL CHLORIDE	11 U
CHLOROETHANE	11 U
METHYLENE CHLORIDE	2 J
ACETONE	11 U
CARBON DISULFIDE	11 U
1,1-DICHLOROETHENE	11 U
1,1-DICHLOROETHANE	11 U
1,2-DICHLOROETHENE	11 U
CHLOROFORM	11 U
1,2-DICHLOROETHANE	11 U
2-BUTANONE	11 U
1,1,1-TRICHLOROETHANE	11 U
CARBON TETRACHLORIDE	11 U
BROMODICHLOROMETHANE	11 U
1,2-DICHLOROPROPANE	11 U
CIS-1,3-DICHLOROPROPENE	11 U
TRICHLOROETHENE	11 U
DIBROMOCHLOROMETHANE	11 U
1,1,2-TRICHLOROETHANE	11 U
BENZENE	11 U
TRANS-1,3-DICHLOROPROPENE	11 U
BROMOFORM	11 U
4-METHYL-2-PENTANONE	11 U
2-HEXANONE	11 U
TETRACHLOROETHENE	11 U
1,1,2,2-TETRACHLOROETHANE	11 U
TOLUENE	11 U
CHLOROBENZENE	11 U
ETHYLBENZENE	11 U
STYRENE	11 U
TOTAL XYLENES	11 U

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	13 U	ND	ND		0/13
BROMOMETHANE	11 U	13 U	ND	ND		0/13
VINYL CHLORIDE	11 U	13 U	ND	ND		0/13
CHLOROETHANE	11 U	13 U	ND	ND		0/13
METHYLENE CHLORIDE	2 U	13 U	2 J	2 J	65-SB12-00	2/13
ACETONE	11 U	13 U	10 J	10 J	65-MW05A-00	1/13
CARBON DISULFIDE	11 U	13 U	ND	ND		0/13
1,1-DICHLOROETHENE	11 U	13 U	ND	ND		0/13
	11 U	13 U	ND	ND		0/13
1,2-DICHLOROETHENE	11 U	13 U	ND	ND		0/13
CHLOROFORM	11 U	13 U	ND	ND	ς	0/13
1,2-DICHLOROETHANE	11 U	13 U	ND	ND		0/13
2-BUTANONE	11 U	13 U	ND	ND		0/13
1,1,1-TRICHLOROETHANE	11 U	13 U	ND	ND		0/13
CARBON TETRACHLORIDE	11 U	13 U	ND	ND		0/13
BROMODICHLOROMETHANE	11 U	13 U	ND	ND		0/13
	11 U	13 U	ND	ND		0/13
CIS-1,3-DICHLOROPROPENE	11 U	13 U	ND	ND		0/13
TRICHLOROETHENE	11 U	13 U	1 J	1 J	65-SB06-00	1/13
DIBROMOCHLOROMETHANE	11 U	13 U	ND	ND		0/13
1,1,2-TRICHLOROETHANE	11 U	13 U	ND	ND		0/13
BENZENE	11 U	13 U	ND	ND		0/13
TRANS-1,3-DICHLOROPROPENE	11 U	13 U	ND	ND		0/13
BROMOFORM	11 U	13 U	ND	ND		0/13
4-METHYL-2-PENTANONE	11 U	13 U	ND	ND		0/13
2-HEXANONE	11 U	13 U	ND	ND		0/13
TETRACHLOROETHENE	11 U	13 U	ND	ND		0/13
1,1,2,2-TETRACHLOROETHANE	11 U	13 U	ND	ND		0/13
TOLUENE	11 U	13 U	1 J	2 J	65-MW07A-00	3/13
CHLOROBENZENE	11 U	13 U	ND	ND		0/13
ETHYLBENZENE	11 U	12 U	1 J	1 J	65-SB07-00	1/13
STYRENE	11 U	13 U	ND	ND		0/13
TOTAL XYLENES	11 U	12 U	3 J	5 J	65-SB07-00	2/13

Ň

LOCATION DATE COLLECTED	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MW05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
OFMINOLATI FO (united)						
SEMIVOLATILES (ug/kg) PHENOL	360 U	360 U	360 U	360 U	390 U	370 U
BIS(2-CHLOROETHYL)ETHER	360 U	360 U	360 U	360 U	390 U	370 U
2-CHLOROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
1.3-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
1,4-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
1,2-DICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
2-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2,2'-OXYBIS(1-CHLOROPROPANE)	360 U	360 U	360 U	360 U	390 U	370 U
4-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
N-NITROSO-DI-N-PROPYLAMINE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROETHANE	360 U	360 U	360 U	360 U	390 U	370 U
NITROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
ISOPHORONE	360 U	360 U	360 U	360 U	390 U	370 U
2-NITROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2.4-DIMETHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
BIS(2-CHLOROETHOXY)METHANE	360 U	360 U	360 U	360 U	390 U	370 U
2,4-DICHLOROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
1,2,4-TRICHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
NAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLOROANILINE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROBUTADIENE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLORO-3-METHYLPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2-METHYLNAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROCYCLOPENTADIENE	360 U	360 UJ	360 U	360 U	390 U	370 U
2,4,6-TRICHLOROPHENOL	360 U	360 U	360 U	360 U	390 U	370 U
2,4,5-TRICHLOROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U
2-CHLORONAPHTHALENE	360 U	360 U	360 U	360 U	390 U	370 U
2-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
DIMETHYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
ACENAPHTHYLENE	360 U	360 U	360 U	360 U	390 U	370 U
2,6-DINITROTOLUENE	360 U	360 U	360 U	360 U	390 U	370 U
3-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
ACENAPHTHENE	130 J	360 U	360 U	360 U	390 U	370 U
2,4-DINITROPHENOL	880 UJ	860 U	150 J	860 U	930 UJ	900 U
4-NITROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U
THINOPHENOL	000 0	000 0	000 0	000 0	300 0	300 0

1

LOCATION DATE COLLECTED	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MW05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	58 J	360 U	360 U	360 U	390 U	370 U
2.4-DINITROTOLUENE	360 U	360 U	360 U	360 U	390 U	370 U
DIETHYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
4-CHLOROPHENYLPHENYL ETHER	360 U	360 U	360 U	360 U	390 U	370 U
FLUORENE	100 J	360 U	360 U	360 U	390 U	370 U
4-NITROANILINE	880 U	860 U	880 U	860 U	930 U	900 U
4.6-DINITRO-2-METHYLPHENOL	880 U	860 U	880 UJ	860 U	930 U	900 U
N-NITROSODIPHENYLAMINE	360 U	360 U	360 U	360 U	390 U	370 U
4-BROMOPHENYL PHENYL ETHER	360 U	360 U	360 U	360 U	390 U	370 U
HEXACHLOROBENZENE	360 U	360 U	360 U	360 U	390 U	370 U
PENTACHLOROPHENOL	880 U	860 U	880 U	860 U	930 U	900 U
PHENANTHRENE	860	360 U	360 U	360 U	390 U	370 U
ANTHRACENE	190 J	360 U	360 U	360 U	390 U	370 U
CARBAZOLE	180 J	360 U	360 U	360 U	390 U	370 U
DI-N-BUTYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
FLUORANTHENE	830	360 U	360 U	360 U	390 U	370 U
PYRENE	850	360 U	360 U	360 U	390 U	370 U
BUTYL BENZYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
3,3'-DICHLOROBENZIDINE	360 U	360 U	360 U	360 U	390 U	370 U
BENZO(A)ANTHRACENE	510	360 U	360 U	360 U	390 U	370 U
CHRYSENE	470	360 U	360 U	360 U	390 U	370 U
BIS(2-ETHYLHEXYL)PHTHALATE	64 J	360 U	360 U	60 J	87 J	51 J
DI-N-OCTYL PHTHALATE	360 U	360 U	360 U	360 U	390 U	370 U
BENZO(B)FLUORANTHENE	360 J	360 U	360 U	360 U	390 U	370 U
BENZO(K)FLUORANTHENE	510	360 U	360 U	360 U	390 U	370 U
BENZO(A)PYRENE	400	360 U	360 U	360 U	390 U	370 U
INDENO(1,2,3-CD)PYRENE	310 J	360 U	360 U	360 U	390 U	370 U
DIBENZO(A,H)ANTHRACENE	150 J	360 U	360 U	360 U	390 U	370 U
BENZO(G,H,I)PERYLENE	250 J	360 U	360 U	360 U	390 U	370 U

~

LOCATION 65-SB06-00 65-SB07-00 65-SB08-00 65-SB09-00 65-SB10-00 65 DATE COLLECTED 04/10/95 04/08/95 04/11/95 04/08/95 04/08/95 04/08/95	-SB11-00 04/08/95
DEPTH 0-1' 0-1' 0-1' 0-1'	0-1'
SEMIVOLATILES (ug/kg)	
PHENOL 410 U 420 U 350 U 370 U 380 U	200.11
BIS(2-CHLOROETHYL)ETHER 410 U 420 U 350 U 370 U 380 U	390 U
2-CHLOROPHENOL 410 U 420 U 350 U 370 U 380 U	390 U 390 U
1,3-DICHLOROBENZENE 410 U 420 U 350 U 370 U 380 U	390 U
1,4-DICHLOROBENZENE 410 U 420 U 350 U 370 U 380 U	390 U
1,2-DICHLOROBENZENE 410 U 420 U 350 U 370 U 380 U	390 U
2-METHYLPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
2,2'-OXYBIS(1-CHLOROPROPANE) 410 U 420 U 350 U 370 U 380 U	390 U
4-METHYLPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
N-NITROSO-DI-N-PROPYLAMINE 410 U 420 U 350 U 370 U 380 U	390 U
HEXACHLOROETHANE 410 U 420 U 350 U 370 U 380 U	390 U
NITROBENZENE 410 U 420 U 350 U 370 U 380 U	390 U
ISOPHORONE 410 U 420 U 350 U 370 U 380 U	390 U
2-NITROPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
2,4-DIMETHYLPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
BIS(2-CHLOROETHOXY)METHANE 410 U 420 U 350 U 370 U 380 U	390 U
2,4-DICHLOROPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
1,2,4-TRICHLOROBENZENE 410 U 420 U 350 U 370 U 380 U	390 U
NAPHTHALENE 410 U 420 U 350 U 370 U 380 U	390 U
4-CHLOROANILINE 410 U 420 U 350 U 370 U 380 U	390 U
HEXACHLOROBUTADIENE 410 U 420 U 350 U 370 U 380 U	390 U
4-CHLORO-3-METHYLPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
2-METHYLNAPHTHALENE 410 U 420 U 350 U 370 U 380 U	390 U
HEXACHLOROCYCLOPENTADIENE 410 U 420 U 350 U 370 U 380 UJ	390 UJ
2,4,6-TRICHLOROPHENOL 410 U 420 U 350 U 370 U 380 U	390 U
2,4,5-TRICHLOROPHENOL 1000 U 1000 U 850 U 900 U 930 U	950 U
2-CHLORONAPHTHALENE 410 U 420 U 350 U 370 U 380 U	390 U
2-NITROANILINE 100 U 100 U 850 U 900 U 930 U	950 U
DIMETHYL PHTHALATE 410 U 420 U 350 U 370 U 380 U	390 U
ACENAPHTHYLENE 410 U 420 U 350 U 370 U 380 U	390 U
2,6-DINITROTOLUENE 410 U 420 U 350 U 370 U 380 U	390 U
3-NITROANILINE 1000 U 1000 U 850 U 900 U 930 U	950 U
ACENAPHTHENE 410 U 420 U 350 U 370 U 380 U	390 U
2,4-DINITROPHENOL 1000 UJ 1000 U 850 UJ 900 U 930 U	950 U
4-NITROPHENOL 1000 U 1000 U 850 U 900 U 930 U	950 U

3

LOCATION DATE COLLECTED DEPTH	65-SB06-00 04/10/95 0-1'	65-SB07-00 04/08/95 0-1'	65-SB08-00 04/11/95 0-1'	65-SB09-00 04/08/95 0-1'	65-SB10-00 04/08/95 0-1'	65-SB11-00 04/08/95 0-1'
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	410 U	420 U	350 U	370 U	380 U	390 U
2,4-DINITROTOLUENE	410 U	420 U	350 U	370 U	380 U	390 U
DIETHYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
4-CHLOROPHENYLPHENYL ETHER	410 U	420 U	350 U	370 U	380 U	390 U
FLUORENE	410 U	420 U	350 U	370 U	380 U	390 U
4-NITROANILINE	1000 U	1000 U	850 U	900 U	930 U	950 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U
N-NITROSODIPHENYLAMINE	410 U	420 U	350 U	370 U	380 U	390 U
4-BROMOPHENYL PHENYL ETHER	410 U	420 U	350 U	370 U	380 U	390 U
HEXACHLOROBENZENE	410 U	420 U	350 U	370 U	380 U	390 U
PENTACHLOROPHENOL	1000 U	1000 U	850 U	900 U	930 U	950 U
PHENANTHRENE	74 J	420 U	350 U	370 U	380 U	390 U
ANTHRACENE	410 U	420 U	350 U	370 U	380 U	390 U
CARBAZOLE	410 U	420 U	350 U	370 U	380 U	390 U
DI-N-BUTYL PHTHALATE	390 J	420 U	260 J	370 U	380 U	390 U
FLUORANTHENE	210 J	420 U	350 U	370 U	380 U	390 U
PYRENE	150 J	420 U	350 U	370 U	380 U	390 U
BUTYL BENZYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
3.3'-DICHLOROBENZIDINE	410 U	420 U	350 U	370 U	380 U	390 U
BENZO(A)ANTHRACENE	110 J	420 U	350 U	370 U	380 U	390 U
CHRYSENE	110 J	420 U	350 U	370 U	380 U	390 U
BIS(2-ETHYLHEXYL)PHTHALATE	72 J	73 J	350 U	57 J	48 J	74 J
DI-N-OCTYL PHTHALATE	410 U	420 U	350 U	370 U	380 U	390 U
BENZO(B)FLUORANTHENE	96 J	420 U	350 U	370 U	380 U	390 U
BENZO(K)FLUORANTHENE	120 J	420 U	350 U	370 U	380 U	390 U
BENZO(A)PYRENE	100 J	420 U	350 U	370 U	380 U	390 U
INDENO(1,2,3-CD)PYRENE	88 J	420 U	350 U	370 U	380 U	390 U
DIBENZO(A,H)ANTHRACENE	45 J	420 U	350 U	370 U	380 U	390 U
BENZO(G,H,I)PERYLENE	70 J	420 U	350 U	370 U	380 U	390 U

LOCATION	65-SB12-00
DATE COLLECTED	04/17/95
DEPTH	0-1'

SEMIVOLATILES (ug/kg)	
PHENOI	360 U
BIS(2-CHLOROETHYL)ETHER	360 U
2-CHLOROPHENOL	360 U
1.3-DICHLOROBENZENE	360 U
1,4-DICHLOROBENZENE	360 U
1,2-DICHLOROBENZENE	360 U
2-METHYLPHENOL	360 U
2,2'-OXYBIS(1-CHLOROPROPANE)	360 U
4-METHYLPHENOL	360 U
N-NITROSO-DI-N-PROPYLAMINE	360 U
HEXACHLOROETHANE	360 U
NITROBENZENE	360 U
ISOPHORONE	360 U
2-NITROPHENOL	360 U
2,4-DIMETHYLPHENOL	360 U
BIS(2-CHLOROETHOXY)METHANE	360 U
2,4-DICHLOROPHENOL	360 U
1,2,4-TRICHLOROBENZENE	360 U
NAPHTHALENE	360 U
4-CHLOROANILINE	360 U
HEXACHLOROBUTADIENE	360 U
4-CHLORO-3-METHYLPHENOL	360 U
2-METHYLNAPHTHALENE	360 U
HEXACHLOROCYCLOPENTADIENE	360 U
2,4,6-TRICHLOROPHENOL	360 U
2,4,5-TRICHLOROPHENOL	870 U
2-CHLORONAPHTHALENE	360 U
	870 U
DIMETHYL PHTHALATE ACENAPHTHYLENE	360 U
2,6-DINITROTOLUENE	360 U 360 U
3-NITROANILINE	300 U 870 U
ACENAPHTHENE	360 U
2,4-DINITROPHENOL	360 U 870 U
4-NITROPHENOL	870 U 870 U
THURSDELENCE	010 0

LOCATION	65-SB12-00
DATE COLLECTED	04/17/95
DEPTH	0-1'

SEMIVOLATILES (ug/kg) cont.	
DIBENZOFURAN	360 U
2,4-DINITROTOLUENE	360 U
DIETHYL PHTHALATE	360 U
4-CHLOROPHENYLPHENYL ETHER	360 U
FLUORENE	360 U
4-NITROANILINE	870 U
4,6-DINITRO-2-METHYLPHENOL	870 U
N-NITROSODIPHENYLAMINE	360 U
4-BROMOPHENYL PHENYL ETHER	360 U
HEXACHLOROBENZENE	360 U
PENTACHLOROPHENOL	870 U
PHENANTHRENE	59 J
ANTHRACENE	360 U
CARBAZOLE	360 U
DI-N-BUTYL PHTHALATE	360 U
FLUORANTHENE	130 J
PYRENE	260 J
BUTYL BENZYL PHTHALATE	360 U
3,3'-DICHLOROBENZIDINE	360 U
BENZO(A)ANTHRACENE	76 J
CHRYSENE	70 J
BIS(2-ETHYLHEXYL)PHTHALATE	360 U
DI-N-OCTYL PHTHALATE	360 U
BENZO(B)FLUORANTHENE	89 J
BENZO(K)FLUORANTHENE	360 U
BENZO(A)PYRENE	360 U
INDENO(1,2,3-CD)PYRENE	360 U
DIBENZO(A,H)ANTHRACENE	360 U
BENZO(G,H,I)PERYLENE	360 U
· · · · ·	

LOCATION DATE COLLECTED	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DEPTH	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
DEFIN	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	350 U	420 U	ND	ND		0/13
BIS(2-CHLOROETHYL)ETHER	350 U	420 U	ND	ND		0/13
2-CHLOROPHENOL	350 U	420 U	ND	ND		0/13
1,3-DICHLOROBENZENE	350 U	420 U	ND	ND		0/13
1,4-DICHLOROBENZENE	350 U	420 U	ND	ND		0/13
1,2-DICHLOROBENZENE	350 U	420 U	ND	ND		0/13
2-METHYLPHENOL	350 U	420 U	ND	ND		0/13
2,2'-OXYBIS(1-CHLOROPROPANE)	350 U	420 U	ND	ND		0/13
4-METHYLPHENOL	350 U	420 U	ND	ND		0/13
N-NITROSO-DI-N-PROPYLAMINE	350 U	420 U	ND	ND		0/13
HEXACHLOROETHANE	350 U	420 U	ND	ND		0/13
NITROBENZENE	350 U	420 U	ND	ND		0/13
ISOPHORONE	350 U	420 U	ND	ND		0/13
2-NITROPHENOL	350 U	420 U	ND	ND		0/13
2,4-DIMETHYLPHENOL	350 U	420 U	ND	ND		0/13
BIS(2-CHLOROETHOXY)METHANE	350 U	420 U	ND	ND		0/13
2,4-DICHLOROPHENOL	350 U	420 U	ND	ND		0/13
1,2,4-TRICHLOROBENZENE	350 U	420 U	ND	ND		0/13
NAPHTHALENE	350 U	420 U	ND	ND		0/13
4-CHLOROANILINE	350 U	420 U	ND	ND		0/13
HEXACHLOROBUTADIENE	350 U	420 U	ND	ND		0/13
4-CHLORO-3-METHYLPHENOL	350 U	420 U	ND	ND		0/13
2-METHYLNAPHTHALENE	350 U	420 U	ND	ND		0/13
HEXACHLOROCYCLOPENTADIENE	350 U	420 U	ND	ND		0/13
2,4,6-TRICHLOROPHENOL	350 U	420 U	ND	ND		0/13
2,4,5-TRICHLOROPHENOL	850 U	1000 U	ND	ND		0/13
2-CHLORONAPHTHALENE	350 U	420 U	ND	ND		0/13
2-NITROANILINE	850 U	1000 U	ND	ND		0/13
DIMETHYL PHTHALATE	350 U	420 U	ND	ND		0/13
ACENAPHTHYLENE	350 U	420 U	ND	ND		0/13
2.6-DINITROTOLUENE	350 U	420 U	ND	ND		0/13
3-NITROANILINE	850 U	1000 U	ND	ND		0/13
ACENAPHTHENE	350 U	420 U	130 J	130 J	65-DW01-00	1/13
2,4-DINITROPHENOL	850 UJ	1000 UJ	150 J	150 J	65-DW04-00	1/13
4-NITROPHENOL	850 U	1000 U	ND	ND	00-0110-00	0/13
TITLINGENEINOL	000 0	1000 0		110		0/10

10/23/95 65SSSV.WK4

LOCATION DATE COLLECTED		MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DEPTH	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	350 U	420 U	58 J	58 J	65-DW01-00	1/13
2,4-DINITROTOLUENE	350 U	420 U	ND	ND		0/13
DIETHYL PHTHALATE	350 U	420 U	ND	ND		0/13
4-CHLOROPHENYLPHENYL ETHER	350 U	420 U	ND	ND		0/13
FLUORENE	350 U	420 U	100 J	100 J	65-DW01-00	1/13
4-NITROANILINE	850 U	1000 U	ND	ND		0/13
4,6-DINITRO-2-METHYLPHENOL	850 U	1000 U	ND	ND		0/13
N-NITROSODIPHENYLAMINE	350 U	420 U	ND	ND		0/13
4-BROMOPHENYL PHENYL ETHER	350 U	420 U	ND	ND		0/13
HEXACHLOROBENZENE	350 U	420 U	ND	ND		0/13
PENTACHLOROPHENOL	850 U	1000 U	ND	ND		0/13
PHENANTHRENE	350 U	420 U	59 J	860	65-DW01-00	3/13
ANTHRACENE	350 U	420 U	190 J	190 J	65-DW01-00	1/13
CARBAZOLE	350 U	420 U	180 J	180. J	65-DW01-00	1/13
DI-N-BUTYL PHTHALATE	360 U	420 U	260 J	390 J	65-SB06-00	2/13
FLUORANTHENE	350 U	420 U	130 J	830	65-DW01-00	3/13
PYRENE	350 U	420 U	150 J	850	65-DW01-00	3/13
BUTYL BENZYL PHTHALATE	350 U	420 U	ND	ND		0/13
3,3'-DICHLOROBENZIDINE	350 U	420 U	ND	ND		0/13
BENZO(A)ANTHRACENE	350 U	420 U	76 J	510	65-DW01-00	3/13
CHRYSENE	350 U	420 U	70 J	470	65-DW01-00	3/13
BIS(2-ETHYLHEXYL)PHTHALATE	350 U	360 U	48 J	87 J	65-MW06A-00	9/13
DI-N-OCTYL PHTHALATE	350 U	420 U	ND	ND		0/13
BENZO(B)FLUORANTHENE	350 U	420 U	89 J	360 J	65-DW01-00	3/13
BENZO(K)FLUORANTHENE	350 U	420 U	120 J	510	65-DW01-00	2/13
BENZO(A)PYRENE	350 U	420 U	100 J	400	65-DW01-00	2/13
INDENO(1,2,3-CD)PYRENE	350 U	420 U	88 J	310 J	65-DW01-00	2/13
DIBENZO(A,H)ANTHRACENE	350 U	420 U	45 J	150 J	65-DW01-00	2/13
BENZO(G,H,I)PERYLENE	350 U	420 U	70 J	250 J	65-DW01-00	2/13

Q

LOCATION DATE COLLECTED DEPTH	65-DW01-00 04/10/95 0-1'	65-DW02-00 04/09/95 0-1'	65-DW04-00 04/05/95 N/A	65-MW05A-00 04/05/95 N/A	65-MW06A-00 04/08/95 0-1'	65-MW07A-00 04/04/95 N/A
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
BETA-BHC	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
DELTA-BHC	1.9 U	1.8 ປ	1.9 U	1.8 U	1.9 U	1.9 U
GAMMA-BHC(LINDANE)	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
HEPTACHLOR	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
ALDRIN	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
HEPTACHLOR EPOXIDE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	2.3
ENDOSULFAN I	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
DIELDRIN	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
4,4'-DDE	27	3.5 U	3.6 U	3.6 U	3.8 U	83 J
ENDRIN	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ENDOSULFAN II	3.7 U	3.9 NJ	3.6 U	3.8 NJ	3.8 U	3.7 U
4,4'-DDD	3.8 NJ	3.5 UJ	3.6 UJ	3.6 U	3.8 UJ	5 NJ
ENDOSULFAN SULFATE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
4,4'-DDT	20 U	3.5 U	3.6 U	3.6 U	3.8 U	56 J
METHOXYCHLOR	19 U	18 U	19 U	18 U	19 U	19 U
ENDRIN KETONE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ENDRIN ALDEHYDE	3.7 U	3.5 U	3.6 U	3.6 U	3.8 U	3.7 U
ALPHA CHLORDANE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
GAMMA CHLORDANE	1.9 U	1.8 U	1.9 U	1.8 U	1.9 U	1.9 U
TOXAPHENE	190 U	180 U	190 U	180 U	190 U	190 U
PCB-1016	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1221	74 U	72 U	73 U	72 U	77 U	75 U
PCB-1232	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1242	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1248	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1254	37 U	35 U	36 U	36 U	38 U	37 U
PCB-1260	52 J	35 U	36 U	36 U	38 U	37 U

LOCATION DATE COLLECTED DEPTH	65-SB06-00 04/10/95 0-1'	65-SB07-00 04/08/95 0-1'	65-SB08-00 04/11/95 0-1'	65-SB09-00 04/08/95 0-1'	65-SB10-00 04/08/95 0-1'	65-SB11-00 04/08/95 0-1'
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
BETA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
DELTA-BHC	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
GAMMA-BHC(LINDANE)	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
HEPTACHLOR	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
ALDRIN	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
HEPTACHLOR EPOXIDE	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
ENDOSULFAN I	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
DIELDRIN	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
4,4'-DDE	47	77 J	3.5 U	3.7 U	.3.7 U	4.3
ENDRIN	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
ENDOSULFAN II	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
4,4'-DDD	17 J	4.2 UJ	3.5 UJ	31 J	59 J	16 J
ENDOSULFAN SULFATE	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
4,4'-DDT	23 U	56 J	3.5 U	5.3 U	3.7 U	3.9 U
METHOXYCHLOR	21 U	22 U	18 U	19 U	19 U	20 U
ENDRIN KETONE	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
ENDRIN ALDEHYDE	4.1 U	4.2 U	3.5 U	3.7 U	3.7 U	3.9 U
ALPHA CHLORDANE	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
GAMMA CHLORDANE	2.1 U	2.2 U	1.8 U	1.9 U	1.9 U	2 U
TOXAPHENE	210 U	220 U	180 U	190 U	190 U	200 U
PCB-1016	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1221	82 U	85 U	72 U	76 U	76 U	80 U
PCB-1232	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1242	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1248	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1254	41 U	42 U	35 U	37 U	37 U	39 U
PCB-1260	41 U	42 U	35 U	37 U	37 U	39 U

LOCATION DATE COLLECTED DEPTH	65-SB12-00 04/17/95 0-1'
PESTICIDE/PCBS (ug/kg)	
ALPHA-BHC	1.9 U
BETA-BHC	1.9 U
DELTA-BHC	1.9 U
GAMMA-BHC(LINDANE)	1.9 U
HEPTACHLOR	1.9 U
ALDRIN	1.9 U
HEPTACHLOR EPOXIDE	1.9 U
ENDOSULFAN I	1.9 U
DIELDRIN	3.6 U
4,4'-DDE	75
ENDRIN	3.6 U
ENDOSULFAN II	3.6 U
4,4'-DDD	20 J
ENDOSULFAN SULFATE	3.6 U
4,4'-DDT	25
METHOXYCHLOR	19 U
ENDRIN KETONE	3.6 U
ENDRIN ALDEHYDE	3.6 U
ALPHA CHLORDANE	1.9 U
GAMMA CHLORDANE	1.9 U
TOXAPHENE	190 U
PCB-1016	36 U
PCB-1221	73 U
PCB-1232	36 U
PCB-1242	36 U
PCB-1248	36 U
PCB-1254	36 U
PCB-1260	36 U

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.8 U	2.2 U	ND	ND		0/13
BETA-BHC	1.8 U	2.2 U	ND	ND		0/13
DELTA-BHC	1.8 U	2.2 U	ND	ND		0/13
GAMMA-BHC(LINDANE)	1.8 U	2.2 U	ND	ND		0/13
HEPTACHLOR	1.8 U	2.2 U	ND	ND		0/13
ALDRIN	1.8 U	2.2 U	ND	ND		0/13
HEPTACHLOR EPOXIDE	1.8 U	2.2 U	2.3	2.3	65-MW07A-00	1/13
ENDOSULFAN I	1.8 U	2.2 U	ND	ND		0/13
DIELDRIN	3.5 U	4.2 U	ND	ND		0/13
4,4'-DDE	3.5 U	3.8 U	4.3	83 J	65-MW07A-00	6/13
ENDRIN	3.5 U	4.2 U	ND	ND		0/13
ENDOSULFAN II	3.5 U	4.2 U	3.8 NJ	3.9 NJ	65-DW02-00	2/13
4,4'-DDD	3.5 UJ	4.2 UJ	3.8 NJ	59 J	65-SB10-00	7/13
ENDOSULFAN SULFATE	3.5 U	4.2 U	ND	ND		0/13
4,4'-DDT	3.5 U	23 U	25	56 J	65-SB07-00	3/13
METHOXYCHLOR	18 U	22 U	ND	ND		0/13
ENDRIN KETONE	3.5 U	4.2 U	ND	ND		0/13
ENDRIN ALDEHYDE	3.5 U	4.2 U	ND	ND		0/13
ALPHA CHLORDANE	1.8 U	2.2 U	ND	ND		0/13
GAMMA CHLORDANE	1.8 U	2.2 U	ND	ND		0/13
TOXAPHENE	180 U	220 U	ND	ND		0/13
PCB-1016	35 U	42 U	ND	ND		0/13
PCB-1221	72 U	85 U	ND	ND		0/13
PCB-1232	35 U	42 U	ND	ND		0/13
PCB-1242	35 U	42 U	ND	ND		0/13
PCB-1248	35 U	42 U	ND	ND		0/13
PCB-1254	35 U	42 U	ND	ND		0/13
PCB-1260	35 U	42 U	52 J	52 J	65-DW01-00	1/13

APPENDIX O.2 SURFACE SOIL METALS

LOCATION DATE_STAMP	65-DW01-00 04/10/95	65-DW02-00 04/09/95	65-DW04-00 04/05/95	65-MW05A-00 04/05/95	65-MW06A-00 04/08/95	65-MW07A-00 04/04/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
MOISTURE	10.74	9.43	10.17	10.34	15.45	11.66
ANALYTES (mg/kg)						
ALUMINUM	5040	1350	773	1050	3190	1520
ANTIMONY	11.2 U	11 U	11.1 U	11.1 U	11.8 U	11.3 U
ARSENIC	2.2 U	2.2 U	2.2 U	2.2 U	2.4 U	2.3 U
BARIUM	36.3	5.4	6.9	6.2	6.8	19.2
BERYLLIUM	0.22 U	0.22 U	0.22 U	0.22 U	0.24 U	0.23 U
CADMIUM	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U
CALCIUM	806	176	79.3	243	367	3460
CHROMIUM	8.6	2.3	2.2 U	2.4	4.1	2.3
COBALT	4.5 UJ	4.4 UJ	8.3 U	8.2 U	4.7 UJ	4.5 U
COPPER	55.6	2.5	2.2 U	2.2 U	3.3	2.3 U
IRON	7470 J	773 J	509	1020	1300 J	684
LEAD	178 J	7.7 J	2	3.7	7.3 J	8.6
MAGNESIUM	169	32.4	30.3	42.8	88.1	82.5
MANGANESE	163 J	7.9 J	9.6	8.2	8 J	7.1
MERCURY	0.11 U	0.11 U	0.11 U	0.11 U	0.12 U	0.11 U
NICKEL	4.6	4.4 U	4.5 U	4.5 U	4.7 U	4.5 U
POTASSIUM	224 U	221 U	223 U	223 U	236 U	227 U
SELENIUM	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U
SILVER	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U
SODIUM	51.3	44.2 U	44.5 U	44.6 U	47.3 U	56.3
THALLIUM	2.2 U	2.2 U	2.2 U	2.2 U	2.4 U	2.3 U
VANADIUM	12	2.2 U	2.2 U	2.8	3.4	2.3 U
ZINC	377 J	12.2 J	7.8 U	5.3	13.8 J	9.1 U

٩

LOCATION DATE_STAMP	65-SB06-00 04/10/95	65-SB07-00 04/08/95	65-SB08-00 04/11/95	65-SB09-00 04/08/95	65-SB10-00 04/08/95	65-SB11-00 04/08/95
DEPTH	0-1'	0-1'	0-1'	0-1'	0-1'	0-1'
MOISTURE	19.19	23.14	7.48	11.86	13.86	18.31
ANALYTES (mg/kg)						
ALUMINUM	2140	1490	656	2830	4700	4110
ANTIMONY	12.4 U	13 U	10.8 U	11.4 U	11.6 U	12.2 U
ARSENIC	2.5 U	2.6 U	2.2 U	2.3 U	2.3 U	2.4 U
BARIUM	17.5	6.8	2.7	10.9	11.5	9.9
BERYLLIUM	0.25 U	0.26 U	0.22 U	0.23 U	0.23 U	0.24 U
CADMIUM	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
CALCIUM	542	168	121	554	514	470
CHROMIUM	4.6	3	2.2 U	4.6	6.8	6.3
COBALT	5 UJ	5.2 UJ	4.3 UJ	4.5 UJ	4.6 UJ	4.9 UJ
COPPER	51	6	2.2 U	15	10	9
IRON	3600	890 J	597	2110 J	2010 J	2050 J
LEAD	94.5	8.8 J	2.5	40.9 J	20.4 J	15.4 J
MAGNESIUM	55	52	28.5	97.1	187	143
MANGANESE	119	6.9 J	2.9	19.1	19.3 J	17.6 J
MERCURY	0.12 U	0.13 U	0.11 U	0.11 U	0.12 U	0.12 U
NICKEL	5 U	5.2 U	4.3 U	4.5 U	4.6 U	4.9 U
POTASSIUM	248 U	260 U	216 U	227 U	232 U	248
SELENIUM	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
SILVER	1.2 U	1.3 U	1.1 U	1.1 U	1.2 U	1.2 U
SODIUM	49.5 U	52 U	43.2 U	45.4 U	46.5 U	49 U
THALLIUM	2.5 U	2.6 U	2.2 U	2.3 U	2.3	40 U 2.4 U
VANADIUM	7.2	2.9	2.2 U	3.2	5.1	4.8
ZINC	190	9 J	3.7	39.7 J	33.2 J	 24 J
			••••		00.20	24.0

LOCATION DATE_STAMP DEPTH MOISTURE	65-SB12-00 04/17/95 0-1' 9 13
MOISTURE	9.13
ANALYTES (mg/kg)	
ALUMINUM	2940
ANTIMONY	11 U
ARSENIC	2.2 U
BARIUM	12.6
BERYLLIUM	0.22 U
CADMIUM	1.1 U
CALCIUM	729
CHROMIUM	4.8
COBALT	4.4 U
COPPER	42.3
IRON	16400
LEAD	117
MAGNESIUM	54.8
MANGANESE	75.4
MERCURY	0.11 U
NICKEL	5.7
POTASSIUM	220 U
SELENIUM	1.1 U
SILVER	1.1 U
SODIUM	44 U
THALLIUM	2.2 U
VANADIUM	5.1
ZINC	110

LOCATION DATE_STAMP DEPTH MOISTURE	MINIMUM NONDETECTED	MAXIMUM	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	656	5040	65-DW01-00	13/13
ANTIMONY	10.8 U	13 U	ND	ND		0/13
ARSENIC	2.2 U	2.6 U	ND	ND		0/13
BARIUM	NA	NA	2.7	36.3	65-DW01-00	13/13
BERYLLIUM	0.22 U	0.26 U	ND	ND		0/13
CADMIUM	1.1 U	1.3 U	ND	ND		0/13
CALCIUM	NA	NA	79.3	3460	65-MW07A-00	13/13
CHROMIUM	2.2 U	2.2 U	2.3	8.6	65-DW01-00	11/13
COBALT	4.3 UJ	8.3 U	ND	ND		0/13
COPPER	2.2 U	2.3 U	2.5	55.6	65-DW01-00	9/13
IRON	NA	NA	509	16400	65-SB12-00	13/13
LEAD	NA	NA	2	178 J	65-DW01-00	13/13
MAGNESIUM	NA	NA	28.5	187	65-SB10-00	13/13
MANGANESE	NA	NA	2.9	163 J	65-DW01-00	13/13
MERCURY	0.11 U	0.13 U	ND	ND		0/13
NICKEL	4.3 U	5.2 U	4.6	5.7	65-SB12-00	2/13
POTASSIUM	216 U	260 U	248	248	65-SB11-00	1/13
SELENIUM	1.1 U	1.3 U	ND	ND		0/13
SILVER	1.1 U	1.3 U	ND	ND		0/13
SODIUM	43.2 U	52 U	51.3	56.3	65-MW07A-00	2/13
THALLIUM	2.2 U	2.6 U	2.3	2.3	65-SB10-00	1/13
VANADIUM	2.2 U	2.3 U	2.8	12	65-DW01-00	9/13
ZINC	7.8 U	9.1 U	3.7	377 J	65-DW01-00	11/13

APPENDIX 0.3 SUBSURFACE SOIL ORGANICS

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
BROMOMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
VINYL CHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
METHYLENE CHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U
ACETONE	18 U	380	180	10 J	11 U	12 U
CARBON DISULFIDE	11 U	12 U	11 U	12 U	11 U	12 U
1,1-DICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
1,1-DICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROFORM	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
2-BUTANONE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,1-TRICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
CARBON TETRACHLORIDE	11 U	12 U	11 U	12 U	11 U	12 U
BROMODICHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,2-DICHLOROPROPANE	11 U	12 U	11 U	12 U	11 U	12 U
CIS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	12 U	11 U	12 U
TRICHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
DIBROMOCHLOROMETHANE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,2-TRICHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
BENZENE	11 U	12 U	11 U	12 U	11 U	12 U
TRANS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	12 U	11 U	12 U
BROMOFORM	11 U	12 U	11 U	12 U	11 U	12 U
4-METHYL-2-PENTANONE	11 U	12 U	111 U	12 U	11 U	12 U
2-HEXANONE	11 U	12 U	44 U	12 U	11 U	12 U
TETRACHLOROETHENE	11 U	12 U	11 U	12 U	11 U	12 U
1,1,2,2-TETRACHLOROETHANE	11 U	12 U	11 U	12 U	11 U	12 U
TOLUENE	11 U	12 U	11 U	12 U	11 U	12 U
CHLOROBENZENE	11 U	12 U	11 U	12 U	11 U	12 U
ETHYLBENZENE	11 U	12 U	11 U	12 U	11 U	12 U
STYRENE	11 U	12 U	11 U	12 U	11 U	12 U
TOTAL XYLENES	3 J	1 J	11 U	12 U	1 J	12 U

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
				••		, u
VOLATILES (ug/kg)						
CHLOROMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
BROMOMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
VINYL CHLORIDE	12 U	14 U	12 U	11 U	11 U	12 U
CHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
METHYLENE CHLORIDE	12 U	14 U	12 U	11 U	11 U	12 U
ACETONE	21 U	79	12 U	31	26	37
CARBON DISULFIDE	12 U	14 U	12 U	11 U	11 U	12 U
1,1-DICHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
1,1-DICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
1,2-DICHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
CHLOROFORM	12 U	14 U	12 U	11 U	11 U	12 U
1,2-DICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
2-BUTANONE	12 U	14 U	12 U	4 J	2 J	12 U
1,1,1-TRICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
CARBON TETRACHLORIDE	12 U	14 U	12 U	11 U	11 U	12 U
BROMODICHLOROMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
1,2-DICHLOROPROPANE	12 U	14 U	12 U	11 U	11 U	12 U
CIS-1,3-DICHLOROPROPENE	12 U	14 U	12 U	11 U	11 U	12 U
TRICHLOROETHENE	12 U	2 J	12 U	11 U	11 U	12 U
DIBROMOCHLOROMETHANE	12 U	14 U	12 U	11 U	11 U	12 U
1,1,2-TRICHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
BENZENE	12 U	14 U	12 U	11 U	11 U	12 U
TRANS-1,3-DICHLOROPROPENE	12 U	14 U	12 U	11 U	11 U	12 U
BROMOFORM	12 U	14 U	12 U	11 U	11 U	12 U
4-METHYL-2-PENTANONE	12 U	14 U	12 U	11 U	11 U	12 U
2-HEXANONE	12 U	14 U	12 U	11 U	11 U	12 U
TETRACHLOROETHENE	12 U	14 U	12 U	11 U	11 U	12 U
1,1,2,2-TETRACHLOROETHANE	12 U	14 U	12 U	11 U	11 U	12 U
TOLUENE	12 U	14 U	12 U	11 U	11 U	1 J
CHLOROBENZENE	12 U	14 U	12 U	11 U	11 U	12 U
ETHYLBENZENE	12 U	14 U	12 U	11 U	11 U	12 U
STYRENE	12 U	14 U	12 U	11 U	11 U	12 U
TOTAL XYLENES	12 U	14 U	12 U	2 J	3 J	12 U

.

LOCATION DATE COLLECTED DEPTH	65-SB12-05 04/17/95 9-11'	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
BROMOMETHANE	11 U	12 U	11 Ū	11 U	14 U	11 U
VINYL CHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROETHANE	11 U	12 U	11 Ū	11 U	14 U	11 U
METHYLENE CHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
ACETONE	11 U	12	46	25	210	9 J
CARBON DISULFIDE	11 U	12 U	11 U	2 J	14 U	11 U
1,1-DICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
1,1-DICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROFORM	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
2-BUTANONE	11 U	12 U	11 U	11 U	29	11 U
1,1,1-TRICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
CARBON TETRACHLORIDE	11 U	12 U	11 U	11 U	14 U	11 U
BROMODICHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,2-DICHLOROPROPANE	11 U	12 U	11 U	11 U	14 U	11 U
CIS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	11 U	14 U	11 U
TRICHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
DIBROMOCHLOROMETHANE	11 U	12 U	11 U	11 U	14 U	11 U
1,1,2-TRICHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
BENZENE	11 U	12 U	11 U	11 U	14 U	11 U
TRANS-1,3-DICHLOROPROPENE	11 U	12 U	11 U	11 U	14 U	11 U
BROMOFORM	11 U	12 U	11 U	11 U	14 U	11 U
4-METHYL-2-PENTANONE	11 U	12 U	11 U	11 U	14 U	11 U
2-HEXANONE	11 U	12 U	11 U	11 U	14 U	11 U
TETRACHLOROETHENE	11 U	12 U	11 U	11 U	14 U	11 U
1,1,2,2-TETRACHLOROETHANE	11 U	12 U	11 U	11 U	14 U	11 U
TOLUENE	11 U	12 U	11 U	11 U	14 U	11 U
CHLOROBENZENE	11 U	12 U	11 U	11 U	14 U	11 U
ETHYLBENZENE	11 U	12 U	11 <u>U</u>	11 U	14 U	11 U
STYRENE	11 U	12 U	11 U	11 U	14 U	11 U
TOTAL XYLENES	11 U	12 U	11 U	11 U	14 U	11 U

LOCATION DATE COLLECTED DEPTH	65-TP07 05/07/95
	05/07/95 11 11 11 11 11 11 11 11 11 1
1,1,2,2-TETRACHLOROETHANE	11
TOLUENE	11
CHLOROBENZENE	11
ETHYLBENZENE	11
STYRENE	11
TOTAL XYLENES	11

11 U 11 U 11 U 11 U 11 U 7 J 11 U 11 U

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	11 U	14 U	ND	ND		0/19
BROMOMETHANE	11 U	14 U	ND	ND		0/19
VINYL CHLORIDE	11 U	14 U	ND	ND		0/19
CHLOROETHANE	11 U	14 U	ND	ND		0/19
METHYLENE CHLORIDE	11 U	14 U	ND	ND		0/19
ACETONE	11 U	21 U	7 J	380	65-DW02-02	13/19
CARBON DISULFIDE	11 U	14 U	2 J	2 J	65-TP04	1/19
1,1-DICHLOROETHENE	11 U	14 U	ND	ND		0/19
1,1-DICHLOROETHANE	11 U	14 U	ND	ND		0/19
1,2-DICHLOROETHENE	11 U	14 U	ND	ND		0/19
CHLOROFORM	11 U	14 U	ND	ND		0/19
1,2-DICHLOROETHANE	11 U	14 U	ND	ND		0/19
2-BUTANONE	11 U	14 U	2 J	29	65-TP05	3/19
1,1,1-TRICHLOROETHANE	11 U	14 U	ND	ND		0/19
CARBON TETRACHLORIDE	11 U	14 U	ND	ND		0/19
BROMODICHLOROMETHANE	11 U	14 U	ND	ND		0/19
1,2-DICHLOROPROPANE	11 U	14 U	ND	ND		0/19
CIS-1,3-DICHLOROPROPENE	11 U	14 U	ND	ND		0/19
TRICHLOROETHENE	11 U	14 U	2 J	2 J	65-SB07-04	1/19
DIBROMOCHLOROMETHANE	11 U	14 U	ND	ND		0/19
1,1,2-TRICHLOROETHANE	11 U	14 U	ND	ND		0/19
BENZENE	- 11 U	14 U	ND	ND		0/19
TRANS-1,3-DICHLOROPROPENE	11 U	14 U	ND	ND		0/19
BROMOFORM	11 U	14 U	ND	ND		0/19
4-METHYL-2-PENTANONE	11 U	111 U	ND	ND		0/19
2-HEXANONE	11 U	44 U	ND	ND		0/19
TETRACHLOROETHENE	11 U	14 U	ND	ND		0/19
1,1,2,2-TETRACHLOROETHANE	11 U	14 U	ND	ND		0/19
TOLUENE	11 U	14 U	1 J	1 J	65-SB11-04	1/19
CHLOROBENZENE	11 U	14 U	ND	ND		0/19
ETHYLBENZENE	11 U	14 U	ND	ND		0/19
STYRENE	11 U	14 U	ND	ND		0/19
TOTAL XYLENES	11 U	14 U	1 J	3 J	65-SB10-01	5/19

.

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
SEMIVOLATILES (ug/kg)						
PHENOL	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-CHLOROETHYL)ETHER	370 U	380 U	340 U	370 U	360 U	380 U
2-CHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
1,3-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
1,4-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
1,2-DICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
2-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,2'-OXYBIS(1-CHLOROPROPANE)	370 U	380 U	340 U	370 U	360 U	380 U
4-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
N-NITROSO-DI-N-PROPYLAMINE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROETHANE	370 U	380 U	340 U	370 U	360 U	380 U
NITROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
ISOPHORONE	370 U	380 U	340 U	370 U	360 U	380 U
2-NITROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DIMETHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-CHLOROETHOXY)METHANE	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DICHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
1,2,4-TRICHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
NAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLOROANILINE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROBUTADIENE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLORO-3-METHYLPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2-METHYLNAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROCYCLOPENTADIENE	370 UJ	380 UJ	340 U	370 U	360 U	380 U
2,4,6-TRICHLOROPHENOL	370 U	380 U	340 U	370 U	360 U	380 U
2,4,5-TRICHLOROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
2-CHLORONAPHTHALENE	370 U	380 U	340 U	370 U	360 U	380 U
2-NITROANILINE	900 U	930 U	830 U	910 U	880 U	930 U
DIMETHYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
ACENAPHTHYLENE	370 U	380 U	340 U	370 U	360 U	380 U
2,6-DINITROTOLUENE	370 U	380 U	340 U	370 U	360 U	380 U
3-NITROANILINE	900 U	930 U	830 U	910 U	880 U	930 U
ACENAPHTHENE	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DINITROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
4-NITROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	370 U	380 U	340 U	370 U	360 U	380 U
2,4-DINITROTOLUENE	370 U	380 U	340 U	370 U	360 U	380 U
DIETHYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
4-CHLOROPHENYLPHENYL ETHER	370 U	380 U	340 U	370 U	360 U	380 U
FLUORENE	370 U	380 U	340 U	370 U	360 U	380 U
4-NITROANILINE	900 U	930 U	830 R	910 U	880 U	930 U
4,6-DINITRO-2-METHYLPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
N-NITROSODIPHENYLAMINE	370 U	380 U	340 U	370 U	360 U	380 U
4-BROMOPHENYL PHENYL ETHER	370 U	380 U	340 U	370 U	360 U	380 U
HEXACHLOROBENZENE	370 U	380 U	340 U	370 U	360 U	380 U
PENTACHLOROPHENOL	900 U	930 U	830 U	910 U	880 U	930 U
PHENANTHRENE	370 U	380 U	340 U	370 U	360 U	380 U
ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
CARBAZOLE	370 U	380 U	340 U	370 U	360 U	380 U
DI-N-BUTYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
BUTYL BENZYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
3,3'-DICHLOROBENZIDINE	370 U	380 U	340 U	370 U Ű	360 U	380 U
BENZO(A)ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
CHRYSENE	370 U	380 U	340 U	370 U	360 U	380 U
BIS(2-ETHYLHEXYL)PHTHALATE	370	65 J	340 U	96 J	49 J	61 J
DI-N-OCTYL PHTHALATE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(B)FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(K)FLUORANTHENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(A)PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
INDENO(1,2,3-CD)PYRENE	370 U	380 U	340 U	370 U	360 U	380 U
DIBENZO(A,H)ANTHRACENE	370 U	380 U	340 U	370 U	360 U	380 U
BENZO(G,H,I)PERYLENE	370 U	380 U	340 U	370 U	360 U	380 U

n

	65-SB06-02	65-SB07-04	65-SB08-04	65-SB09-02	65-SB10-01	65-SB11-04
DATE COLLECTED	04/10/95	04/08/95 7-9'	04/11/95	04/08/95	04/08/95	04/08/95
DEPTH	3-5'	1-9	7-9'	3-5'	1-3'	7-9'
SEMIVOLATILES (ug/kg)						
PHENOL	410 U	440 U	400 U	370 U	370 U	380 U
BIS(2-CHLOROETHYL)ETHER	410 U	440 U	400 U	370 U	370 U	380 U
2-CHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
1.3-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
1.4-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
1.2-DICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
2-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2,2'-OXYBIS(1-CHLOROPROPANE)	410 U	440 U	400 U	370 U	370 U	380 U
4-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
N-NITROSO-DI-N-PROPYLAMINE	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROETHANE	410 U	440 U	400 U	370 U	370 U	380 U
NITROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
ISOPHORONE	410 U	440 U	400 U	370 U	370 U	380 U
2-NITROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DIMETHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
BIS(2-CHLOROETHOXY)METHANE	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DICHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
1.2.4-TRICHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
NAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLOROANILINE	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROBUTADIENE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLORO-3-METHYLPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2-METHYLNAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROCYCLOPENTADIENE	410 U	440 U	400 U	370 U	370 UJ	380 UJ
2,4,6-TRICHLOROPHENOL	410 U	440 U	400 U	370 U	370 U	380 U
2.4.5-TRICHLOROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
2-CHLORONAPHTHALENE	410 U	440 U	400 U	370 U	370 U	380 U
2-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
DIMETHYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
ACENAPHTHYLENE	410 U	440 U	400 U	370 U	370 U	380 U
2.6-DINITROTOLUENE	410 U	440 U	400 U	370 U	370 U	380 U
3-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
ACENAPHTHENE	97 J	440 U	400 U	370 U	370 U	380 U
2.4-DINITROPHENOL	1000 UJ	1100 U	980 UJ	890 U	910 U	910 U
4-NITROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
					0.00	0.00

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	410 U	440 U	400 U	370 U	370 U	380 U
2,4-DINITROTOLUENE	410 U	440 U	400 U	370 U	370 U	380 U
DIETHYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
4-CHLOROPHENYLPHENYL ETHER	410 U	440 U	400 U	370 U	370 U	380 U
FLUORENE	110 J	440 U	400 U	370 U	370 U	380 U
4-NITROANILINE	1000 U	1100 U	980 U	890 U	910 U	910 U
4,6-DINITRO-2-METHYLPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
N-NITROSODIPHENYLAMINE	410 U	440 U	400 U	370 U	370 U	380 U
4-BROMOPHENYL PHENYL ETHER	410 U	440 U	400 U	370 U	370 U	380 U
HEXACHLOROBENZENE	410 U	440 U	400 U	370 U	370 U	380 U
PENTACHLOROPHENOL	1000 U	1100 U	980 U	890 U	910 U	910 U
PHENANTHRENE	1200	440 U	400 U	370 U	370 U	380 U
ANTHRACENE	290 J	440 U	400 U	370 U	370 U	380 U
CARBAZOLE	120 J	440 U	400 U	370 U	370 U	380 U
DI-N-BUTYL PHTHALATE	340 J	440 U	240 J	370 UJ	370 U	380 U
FLUORANTHENE	1900	440 U	400 U	370 U	370 U	380 U
PYRENE	1400	440 U	400 U	370 U	370 U	380 U
BUTYL BENZYL PHTHALATE	410 U	440 U	400 U	370 U	370 U	380 U
3,3'-DICHLOROBENZIDINE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(A)ANTHRACENE	900	440 U	400 U	370 U	370 U	380 U
CHRYSÈŃE	800	440 U	400 U	370 U	370 U	380 U
BIS(2-ETHYLHEXYL)PHTHALATE	110 J	90 J	95 J	81 J	93 J	110 J
DI-N-OCTYL PHTHÁLATE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(B)FLUORANTHENE	710	440 U	400 U	370 U	370 U	380 U
BENZO(K)FLUORANTHENE	620	440 U	400 U	370 U	370 U	380 U
BENZO(A)PYRENE	680	440 U	400 U	370 U	370 U	380 U
INDENO(1,2,3-CD)PYRENE	480 J	440 U	400 U	370 U	370 U	380 U
DIBENZO(A.H)ANTHRACENE	410 U	440 U	400 U	370 U	370 U	380 U
BENZO(G,H,I)PERYLENE	360 J	440 U	400 U	370 U	370 U	380 U

LOCATION DATE COLLECTED	65-SB12-05 04/17/95	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
DEPTH	9-11'	N/A	N/A	N/A	N/A	N/A
		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
SEMIVOLATILES (ug/kg)	270.11	200.11	000.11	070.11	400.11	
PHENOL	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-CHLOROETHYL)ETHER	370 U	390 U	360 U	370 U	460 U	350 U
2-CHLOROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
	370 U 370 U	390 U 390 U	360 U	370 U	460 U	350 U
	370 U	390 U	360 U 360 U	370 U 370 U	460 U 460 U	350 U 350 U
1,2-DICHLOROBENZENE 2-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U 350 U
	370 U	390 U	360 U	370 U	460 U	
2,2'-OXYBIS(1-CHLOROPROPANE) 4-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U 350 U
N-NITROSO-DI-N-PROPYLAMINE	370 U	390 U	360 U	370 U	460 U	350 U 350 U
HEXACHLOROETHANE	370 U	390 U	360 U	370 U	460 U	350 U
NITROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
ISOPHORONE	370 U	390 U	360 U	370 U	460 U	350 U
2-NITROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
2.4 DIMETHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-CHLOROETHOXY)METHANE	370 U	390 U	360 U	370 U	460 U	350 U
2.4-DICHLOROPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
1,2,4-TRICHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
NAPHTHALENE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLOROANILINE	370 U	390 U	360 U	370 U	460 U	350 U
HEXACHLOROBUTADIENE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLORO-3-METHYLPHENOL	370 U	390 U	360 U	370 U	460 U	350 U
	370 U	390 U	360 U	370 U	460 U	350 U
	370 U	390 U	360 U	370 U	460 U	
	370 U 370 U	390 U	360 U	370 U	460 U 460 U	350 U 350 U
	890 U	940 U	870 U	890 U	480 0 1100 U	860 U
2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE	370 U	390 U	360 U	370 U	460 U	350 U
	890 U	940 U	870 U	890 U	1100 U	
	370 U	390 U	360 U	370 U	460 U	860 U
						350 U
ACENAPHTHYLENE	370 U	390 U 390 U	360 U	370 U	460 U	350 U
2,6-DINITROTOLUENE	370 U		360 U	370 U	460 U	350 U
3-NITROANILINE	890 U	940 U	870 U	890 U	1100 U	860 U
ACENAPHTHENE	370 U	390 U	360 U	370 U	460 U	350 U
	890 U	940 UJ	870 UJ	890 UJ	1100 UJ	860 UJ
4-NITROPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U

LOCATION	65-SB12-05	65-TP01	65-TP02	65-TP04	65-TP05	65-TP06
DATE COLLECTED	04/17/95	05/07/95	05/08/95	05/07/95	05/07/95	05/08/95
DEPTH	9-11'	N/A	N/A	N/A	N/A	N/A
		UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	370 U	390 U	360 U	370 U	460 U	350 U
2,4-DINITROTOLUENE	370 U	390 U	360 U	370 U	460 U	350 U
DIETHYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
4-CHLOROPHENYLPHENYL ETHER	370 U	390 U	360 U	370 U	460 U	350 U
FLUORENE	370 U	390 U	360 U	370 U	460 U	350 U
4-NITROANILINE	890 U	940 U	870 U	890 U	1100 U	860 U
4.6-DINITRO-2-METHYLPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
N-NITROSODIPHENYLAMINE	370 U	390 U	360 U	370 U	460 U	350 U
4-BROMOPHENYL PHENYL ETHER	370 U	390 U	360 U	370 U	460 U	350 U
HEXACHLOROBENZENE	370 U	390 U	360 U	370 U	460 U	350 U
PENTACHLOROPHENOL	890 U	940 U	870 U	890 U	1100 U	860 U
PHENANTHRENE	370 U	390 U	360 U	370 U	460 U	350 U
ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
CARBAZOLE	370 U	390 U	360 U	370 U	460 U	350 U
DI-N-BUTYL PHTHALATE	370 U	280 J	250 J	200 J	160 J	210 J
FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
BUTYL BENZYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
3.3'-DICHLOROBENZIDINE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(A)ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
CHRYSENE	370 U	390 U	360 U	370 U	460 U	350 U
BIS(2-ETHYLHEXYL)PHTHALATE	370 U	390 U	37 J	370 U	49 J	39 J
DI-N-OCTYL PHTHALATE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(B)FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(K)FLUORANTHENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(A)PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
INDENO(1,2,3-CD)PYRENE	370 U	390 U	360 U	370 U	460 U	350 U
DIBENZO(A,H)ANTHRACENE	370 U	390 U	360 U	370 U	460 U	350 U
BENZO(G,H,I)PERYLENE	370 U	390 U	360 U	370 U	460 U	350 U

ì

LOCATION	65-TP07
DATE COLLECTED	05/07/95
DEPTH	N/A
	UG/KG
SEMIVOLATILES (ug/kg)	
PHENOL	360 U
BIS(2-CHLOROETHYL)ETHER	360 U
2-CHLOROPHENOL	360 U
1,3-DICHLOROBENZENE	360 U
1,4-DICHLOROBENZENE	360 U
1,2-DICHLOROBENZENE	360 U
2-METHYLPHENOL	360 U
2,2'-OXYBIS(1-CHLOROPROPANE)	360 U
4-METHYLPHENOL	360 U
N-NITROSO-DI-N-PROPYLAMINE	360 U
HEXACHLOROETHANE	360 U
NITROBENZENE	360 U
ISOPHORONE	360 U
2-NITROPHENOL	360 U
2,4-DIMETHYLPHENOL	360 U
BIS(2-CHLOROETHOXY)METHANE	360 U
	360 U
1,2,4-TRICHLOROBENZENE NAPHTHALENE	360 U
4-CHLOROANILINE	55 J
HEXACHLOROBUTADIENE	360 U 360 U
4-CHLORO-3-METHYLPHENOL	360 U
2-METHYLNAPHTHALENE	500 U 60 J
HEXACHLOROCYCLOPENTADIENE	360 U
2,4,6-TRICHLOROPHENOL	360 U
2,4,5-TRICHLOROPHENOL	870 U
2-CHLORONAPHTHALENE	360 U
2-NITROANILINE	870 U
DIMETHYL PHTHALATE	360 U
ACENAPHTHYLENE	360 U
2,6-DINITROTOLUENE	360 U
3-NITROANILINE	870 U
ACENAPHTHENE	94 J
2,4-DINITROPHENOL	870 UJ
	070 11

870 U

4-NITROPHENOL

LOCATION DATE COLLECTED DEPTH SEMIVOLATILES (ug/kg) cont.	65-TP07 05/07/95 N/A UG/KG
DIBENZOFURAN	42 J
2.4-DINITROTOLUENE	360 U
DIETHYL PHTHALATE	360 U
4-CHLOROPHENYLPHENYL ETHER	360 U
FLUORENE	360 U
4-NITROANILINE	870 U
4.6-DINITRO-2-METHYLPHENOL	870 U
N-NITROSODIPHENYLAMINE	360 U
4-BROMOPHENYL PHENYL ETHER	360 U
HEXACHLOROBENZENE	360 U
PENTACHLOROPHENOL	870 U
PHENANTHRENE	150 J
ANTHRACENE	360 U
CARBAZOLE	360 U
DI-N-BUTYL PHTHALATE	270 J
FLUORANTHENE	230 J
PYRENE	190 J
BUTYL BENZYL PHTHALATE	360 U
3,3'-DICHLOROBENZIDINE	360 U
BENZO(A)ANTHRACENE	100 J
CHRYSENE	110 J
BIS(2-ETHYLHEXYL)PHTHALATE	230 J
DI-N-OCTYL PHTHALATE	360 U
BENZO(B)FLUORANTHENE	96 J
BENZO(K)FLUORANTHENE	110 J
BENZO(A)PYRENE	69 J
INDENO(1,2,3-CD)PYRENE	360 U
DIBENZO(A,H)ANTHRACENE	360 U
BENZO(G,H,I)PERYLENE	67 J

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	340 U	460 U	ND	ND		0/19
BIS(2-CHLOROETHYL)ETHER	340 U	460 U	ND	ND		0/19
2-CHLOROPHENOL	340 U	460 U	ND	ND		0/19
1,3-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
1,4-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
1,2-DICHLOROBENZENE	340 U	460 U	ND	ND		0/19
2-METHYLPHENOL	340 U	460 U	ND	ND		0/19
2,2'-OXYBIS(1-CHLOROPROPANE)	340 U	460 U	ND	ND		0/19
4-METHYLPHENOL	340 U	460 U	ND	ND		0/19
N-NITROSO-DI-N-PROPYLAMINE	340 U	460 U	ND	ND		0/19
HEXACHLOROETHANE	340 U	460 U	ND	ND		0/19
NITROBENZENE	340 U	460 U	ND	ND		0/19
ISOPHORONE	340 U	460 U	ND	ND		0/19
2-NITROPHENOL	340 U	460 U	ND	ND		0/19
2,4-DIMETHYLPHENOL	340 U	460 U	ND	ND		0/19
BIS(2-CHLOROETHOXY)METHANE	340 U	460 U	ND	ND		0/19
2,4-DICHLOROPHENOL	340 U	460 U	ND	ND		0/19
1,2,4-TRICHLOROBENZENE	340 U	460 U	ND	ND		0/19
NAPHTHALENE	340 U	460 U	55 J	55 J	65-TP07	1/19
4-CHLOROANILINE	340 U	460 U	ND	ND		0/19
HEXACHLOROBUTADIENE	340 U	460 U	ND	ND		0/19
4-CHLORO-3-METHYLPHENOL	340 U	460 U	ND	ND		0/19
2-METHYLNAPHTHALENE	340 U	460 U	60 J	60 J	65-TP07	1/19
HEXACHLOROCYCLOPENTADIENE	340 U	460 U	ND	ND		0/19
2,4,6-TRICHLOROPHENOL	340 U	460 U	ND	ND		0/19
2,4,5-TRICHLOROPHENOL	830 U	1100 U	ND	ND		0/19
2-CHLORONAPHTHALENE	340 U	460 U	ND	ND		0/19
2-NITROANILINE	830 U	1100 U	ND	ND		0/19
DIMETHYL PHTHALATE	340 U	460 U	ND	ND		0/19
ACENAPHTHYLENE	340 U	460 U	ND	ND		0/19
2,6-DINITROTOLUENE	340 U	460 U	ND	ND		0/19
3-NITROANILINE	830 U	1100 U	ND	ND		0/19
ACENAPHTHENE	340 U	460 U	94 J	97 J	65-SB06-02	2/19
2,4-DINITROPHENOL	830 U	1100 U	ND	ND		0/19
4-NITROPHENOL	830 U	1100 U	ND	ND		0/19

		MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED		NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
DEPTH	NUMBETEGTED	NONDETECTED	DETECTED	DETECTED	DETCOTED	DETEONON
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	340 U	460 U	42 J	42 J	65-TP07	1/19
2,4-DINITROTOLUENE	340 U	460 U	ND	ND		0/19
DIETHYL PHTHALATE	340 U	460 U	ND	ND		0/19
4-CHLOROPHENYLPHENYL ETHER	340 U	460 U	ND	· ND		0/19
FLUORENE	340 U	460 U	110 J	110 J	65-SB06-02	1/19
4-NITROANILINE	860 U	1100 U	ND	ND		0/18
4,6-DINITRO-2-METHYLPHENOL	830 U	1100 U	ND	ND		0/19
N-NITROSODIPHENYLAMINE	340 U	460 U	ND	ND		0/19
4-BROMOPHENYL PHENYL ETHER	340 U	460 U	ND	ND		0/19
HEXACHLOROBENZENE	340 U	460 U	ND	ND		0/19
PENTACHLOROPHENOL	830 U	1100 U	ND	ND		0/19
PHENANTHRENE	340 U	460 U	150 J	1200	65-SB06-02	2/19
ANTHRACENE	340 U	460 U	290 J	290 J	65-SB06-02	1/19
CARBAZOLE	340 U	460 U	120 J	120 J	65-SB06-02	1/19
DI-N-BUTYL PHTHALATE	340 U	440 U	160 J	340 J	65-SB06-02	8/19
FLUORANTHENE	340 U	460 U	230 J	1900	65-SB06-02	2/19
PYRENE	340 U	460 U	190 J	1400	65-SB06-02	2/19
BUTYL BENZYL PHTHALATE	340 U	460 U	ND	ND		0/19
3.3'-DICHLOROBENZIDINE	340 U	460 U	ND	ND		0/19
BENZO(A)ANTHRACENE	340 U	460 U	100 J	900	65-SB06-02	2/19
CHRYSENE	340 U	460 U	110 J	800	65-SB06-02	2/19
BIS(2-ETHYLHEXYL)PHTHALATE	340 U	390 U	37 J	370	65-DW01-04	15/19
DI-N-OCTYL PHTHALATE	340 U	460 U	ND	ND		0/19
BENZO(B)FLUORANTHENE	340 U	460 U	96 J	710	65-SB06-02	2/19
BENZO(K)FLUORANTHENE	340 U	460 U	110 J	620	65-SB06-02	2/19
BENZO(A)PYRENE	340 U	460 U	69 J	680	65-SB06-02	2/19
INDENO(1,2,3-CD)PYRENE	340 U	460 U	480 J	480 J	65-SB06-02	1/19
DIBENZO(A,H)ANTHRACENE	340 U	460 U	ND	ND		0/19
BENZO(G,H,I)PERYLENE	340 U	460 U	67 J	360 J	65-SB06-02	2/19

LOCATION DATE COLLECTED DEPTH	65-DW01-04 04/10/95 7-9'	65-DW02-02 04/09/95 3-5'	65-DW04-05 04/05/95 9-11'	65-MW05A-04 04/05/95 7-9'	65-MW06A-03 04/08/95 5-7'	65-MW07A-05 04/04/95 9-11'
DEITH	1-0	00	0-11	1-0	04	0-11
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
BETA-BHC	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
DELTA-BHC	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
GAMMA-BHC(LINDANE)	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
HEPTACHLOR	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
ALDRIN	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
HEPTACHLOR EPOXIDE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
ENDOSULFAN I	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
DIELDRIN	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDE	8.8 J	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ENDRIN	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ENDOSULFAN II	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDD	4.4 J	3.9 UJ	3.4 UJ	3.7 U	3.6 UJ	3.7 U
ENDOSULFAN SULFATE	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
4,4'-DDT	6.3 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
METHOXYCHLOR	19 U	20 U	18 U	19 U	18 U	19 U
ENDRIN KETONE	3.8 U	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ENDRIN ALDEHYDE	9.4 J	3.9 U	3.4 U	3.7 U	3.6 U	3.7 U
ALPHA CHLORDANE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
GAMMA CHLORDANE	1.9 U	2 U	1.8 U	1.9 U	1.8 U	1.9 U
TOXAPHENE	190 U	200 U	180 U	190 U	180 U	190 U
PCB-1016	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1221	77 U	79 U	70 U	76 U	72 U	76 U
PCB-1232	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1242	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1248	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1254	38 U	39 U	34 U	37 U	36 U	37 U
PCB-1260	38 U	39 U	34 U	37 U	36 U	37 U

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
BETA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
DELTA-BHC	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
GAMMA-BHC(LINDANE)	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
HEPTACHLOR	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
ALDRIN	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
HEPTACHLOR EPOXIDE	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
ENDOSULFAN	2.1 U	2.3 U	2.1 U	1.9 U	1.9 U	2 U
DIELDRIN	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
4,4'-DDE	41	4.4 U	4 U	13	4.6	3.8 U
ENDRIN	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
ENDOSULFAN II	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
4.4'-DDD	9.1 NJ	4.4 UJ	4 UJ	68 J	76 J	3.8 UJ
ENDOSULFAN SULFATE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
4,4'-DDT	37 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
METHOXYCHLOR	21 U	23 U	21 U	19 U	19 U	20 U
ENDRIN KETONE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
ENDRIN ALDEHYDE	4.1 U	4.4 U	4 U	3.6 U	3.7 U	3.8 U
ALPHA CHLORDANE	8.3 J	2.3 U	2.1 U	1.9 U	1.9 U	2 U
GAMMA CHLORDANE	7.5 J	2.3 U	2.1 U	1.9 U	1.9 U	2 U
TOXAPHENE	210 U	230 U	210 U	190 U	190 U	200 U
PCB-1016	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1221	83 U	89 U	82 U	73 U	76 U	78 U
PCB-1232	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1242	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1248	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1254	41 U	44 U	40 U	36 U	37 U	38 U
PCB-1260	41 U	44 U	40 U	36 U	37 U	38 U

LOCATION DATE COLLECTED DEPTH	65-SB12-05 04/17/95 9-11'	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
BETA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
DELTA-BHC	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
GAMMA-BHC(LINDANE)	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
HEPTACHLOR	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
ALDRIN	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
HEPTACHLOR EPOXIDE	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
ENDOSULFAN I	1.9 U	2 U	1.9 U	1.9 U	3.1 NJ	1.8 U
DIELDRIN	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4,4'-DDE	3.6 U	3.9 U	28	45 J	38 J	3.6 U
ENDRIN	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ENDOSULFAN II	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4,4'-DDD	3.6 U	3.9 U	7.3 J	140	340 J	3.6 U
ENDOSULFAN SULFATE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
4,4'-DDT	3.6 U	3.9 U	15	31	9.6	3.6 U
METHOXYCHLOR	19 U	20 UJ	19 UJ	19 UJ	24 UJ	18 UJ
ENDRIN KETONE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ENDRIN ALDEHYDE	3.6 U	3.9 U	3.6 U	3.6 U	4.6 U	3.6 U
ALPHA CHLORDANE	1.9 U	2 U	1.9 U	1.9 U	2.4 U	1.8 U
GAMMA CHLORDANE	1.9 U	2 U	1.9 U	3.1 J	2.4 U	1.8 U
TOXAPHENE	190 U	200 U	190 U	190 U	240 U	180 U
PCB-1016	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1221	74 U	79 U	73 U	74 U	94 U	73 U
PCB-1232	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1242	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1248	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1254	36 U	39 U	36 U	36 U	46 U	36 U
PCB-1260	36 U	39 U	36 U	36 U	46 U	36 U

LOCATION
DATE COLLECTED
DEPTH

65-TP07 05/07/95

PESTICIDE/PCBS (ug/kg)	
ALPHA-BHC	1.9 U
BETA-BHC	1.9 U
DELTA-BHC	1.9 U
GAMMA-BHC(LINDANE)	1.9 U
HEPTACHLOR	1.9 U
ALDRIN	1.9 U
HEPTACHLOR EPOXIDE	1.9 U
ENDOSULFAN I	1.9 U
DIELDRIN	3.6 U
4,4'-DDE	43 J
ENDRIN	3.6 U
ENDOSULFAN II	3.6 U
4,4'-DDD	110
ENDOSULFAN SULFATE	3.6 U
4,4'-DDT	40
METHOXYCHLOR	19 UJ
ENDRIN KETONE	3.6 U
ENDRIN ALDEHYDE	3.6 U
ALPHA CHLORDANE	1.9 U
GAMMA CHLORDANE	3 J
TOXAPHENE	190 U
PCB-1016	36 U
PCB-1221	73 U
PCB-1232	36 U
PCB-1242	36 U
PCB-1248	36 U
PCB-1254	36 U
PCB-1260	36 U

LOCATION					LOCATION OF	FREQUENCY
DATE COLLECTED	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
DEPTH	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	1.8 U	2.4 U	ND	ND		0/19
BETA-BHC	1.8 U	2.4 U	ND	ND		0/19
DELTA-BHC	1.8 U	2.4 U	ND	ND		0/19
GAMMA-BHC(LINDANE)	1.8 U	2.4 U	ND	ND		0/19
HEPTACHLOR	1.8 U	2.4 U	ND	ND		0/19
ALDRIN	1.8 U	2.4 U	ND	ND		0/19
HEPTACHLOR EPOXIDE	1.8 U	2.4 U	ND	ND		0/19
ENDOSULFAN I	1.8 U	2.3 U	3.1 NJ	3.1 NJ	65-TP05	1/19
DIELDRIN	3.4 U	4.6 U	ND	ND		0/19
4,4'-DDE	3.4 U	4.4 U	4.6	45 J	65-TP04	8/19
ENDRIN	3.4 U	4.6 U	ND	ND		0/19
ENDOSULFAN II	3.4 U	4.6 U	ND	ND		0/19
4,4'-DDD	3.4 UJ	4.4 UJ	4.4 J	340 J	65-TP05	8/19
ENDOSULFAN SULFATE	3.4 U	4.6 U	ND	ND		0/19
4,4'-DDT	3.4 U	37 U	9.6	40	65-TP07	4/19
METHOXYCHLOR	18 U	24 UJ	ND	ND		0/19
ENDRIN KETONE	3.4 U	4.6 U	ND	ND		0/19
ENDRIN ALDEHYDE	3.4 U	4.6 U	9.4 J	9.4 J	65-DW01-04	1/19
ALPHA CHLORDANE	1.8 U	2.4 U	8.3 J	8.3 J	65-SB06-02	1/19
GAMMA CHLORDANE	1.8 U	2.4 U	3 J	7.5 J	65-SB06-02	3/19
TOXAPHENE	180 U	240 U	ND	ND		0/19
PCB-1016	34 U	46 U	ND	ND		0/19
PCB-1221	70 U	94 U	ND	ND		0/19
PCB-1232	34 U	46 U	ND	ND		0/19
PCB-1242	34 U	46 U	ND	ND		0/19
PCB-1248	34 U	46 U	ND	ND		0/19
PCB-1254	34 U	46 U	ND	ND		0/19
PCB-1260	34 U	46 U	ND	ND		0/19

APPENDIX 0.4 SUBSURFACE SOIL METALS

ŝ

LOCATION DATE COLLECTED	65-DW01-04 04/10/95	65-DW02-02 04/09/95	65-DW04-05 04/05/95	65-MW05A-04 04/05/95	65-MW06A-03 04/08/95	65-MW07A-05 04/04/95
DEPTH	7-9'	3-5'	9-11'	7-9'	5-7'	9-11'
MOISTURE	13.13	16.36	4.68	14.25	9.72	13.65
ANALYTES (mg/kg)						
ALUMINUM	4840	1020	4560	1380	3790	1050
ANTIMONY	11.5 U	12 U	10.5 U	11.7 U	11.1 U	11.6 U
ARSENIC	2.3 U	2.4 U	2.1 U	2.3 U	2.2 U	2.3 U
BARIUM	35.5	5.6	10.9	2.7	3.3	3.5
BERYLLIUM	0.23 U	0.24 U	0.21 U	0.23 U	0.22 U	0.23 U
CADMIUM	1.2 U	1.2 U	1 U	1.2 U	1.1 U	1.2 U
CALCIUM	1040	320	111	57.4 U	208	90.6
CHROMIUM	10.8	2.4 U	5.7	2.8	2.6	2.3 U
COBALT	4.6 UJ	4.8 UJ	6.4 U	8.7 U	4.4 UJ	7.2 U
COPPER	55.8	2.4 U	2.1 U	2.3 U	2.2 U	2.3 U
IRON	9120 J	1250 J	925	686	236 J	412
LEAD	159 J	2.9 J	2.7	1.6	2.1 J	1.7
MAGNESIUM	159	23.8	192	83.1	102	67.1
MANGANESE	127 J	4.8 J	5.6	3	3.2 J	2
MERCURY	0.12 U	0.12 U	0.1 U	0.12 U	0.11 U	0.12 U
NICKEL	8.9	4.8 U	4.2 U	4.7 U	4.4 U	4.6 U
POTASSIUM	230 U	239 U	210 U	233 U	221 U	231 U
SELENIUM	1.2 U	1.2 U	1 U	1.2 U	1.1 U	1.2 U
SILVER	1.2 U	1.2 U	1 U	1.2 U	1.1 U	1.2 U
SODIUM	46 U	47.8 U	69.9	46.6 U	44.3 U	46.3 U
THALLIUM	2.3 U	2.4 U	2.1 U	2.3 U	2.2 U	2.3 U
VANADIUM	9.8	2.4 U	4.1	3.1	2.2 U	2.3 U
ZINC	302 J	4.2 J	6.9 U	3.7 U	2.5 J	4.5 U

I.

LOCATION DATE COLLECTED DEPTH	65-SB06-02 04/10/95 3-5'	65-SB07-04 04/08/95 7-9'	65-SB08-04 04/11/95 7-9'	65-SB09-02 04/08/95 3-5'	65-SB10-01 04/08/95 1-3'	65-SB11-04 04/08/95 7-9'
MOISTURE	19.19	26.15	19.45	10.99	12.23	15.06
ANALYTES (mg/kg)						
ALUMINUM	4340	10600	3190	5730	4720	6440
ANTIMONY	12.4 U	13.6 U	12.4 U	11.2 U	11.4 U	11.8 U
ARSENIC	3.3	2.8	2.5 U	2.2 U	2.3 U	2.4 U
BARIUM	38.3	17.5	6.4	16.4	11.6	9.4
BERYLLIUM	0.25 U	0.27 U	0.25 U	0.22 U	0.23 U	0.24 U
CADMIUM	1.3	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
CALCIUM	1350	49.8	103	628	511	219
CHROMIUM	10.4	17.3	7.3	7.8	6.4	7.7
COBALT	5 UJ	5.4 UJ	5 UJ	4.5 UJ	4.6 UJ	4.7 UJ
COPPER	478	2.7 U	2.5 U	11.5	12.2	2.4 U
IRON	31300	8890 J	7850	2450 J	2610 J	1570 J
LEAD	539	6.9 J	3.6	24.6 J	19.1 J	3.4 J
MAGNESIUM	180	410	223	201	183	309
MANGANESE	471	3.7 J	2.7	21.1 J	15.1 J	3.4 J
MERCURY	0.12 U	0.14 U	0.12 U	0.11 U	0.11 U	0.12 U
NICKEL	243	5.4 U	5 U	4.5 U	4.6 U	4.7 U
POTASSIUM	248 U	453	292	253	228 U	284
SELENIUM	1.2 U	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
SILVER	1.2 U	1.4 U	1.2 U	1.1 U	1.1 U	1.2 U
SODIUM	63.9	130	50.8	44.9 U	45.6 U	47.1 U
THALLIUM	4.2	2.7 U	2.5 U	2.2 U	2.3 U	2.4 U
VANADIUM	11.1	27.2	10.5	5	5.9	6.2
ZINC	764	7.8 J	5.3	44.7 _" J	41.7 J	15.2 J

r

LOCATION DATE COLLECTED DEPTH MOISTURE	65-SB12-05 04/17/95 9-11' 10.3	65-TP01 05/07/95	65-TP02 05/08/95	65-TP04 05/07/95	65-TP05 05/07/95	65-TP06 05/08/95
ANALYTES (mg/kg)						
ALUMINUM	5190	2750	4740	5030	5730	2590
ANTIMONY	11.1 U	12 U	11 U	11.3 U	14.4 U	10.9 U
ARSENIC	2.2 U	2.4 U	2.2 U	2.6	2.9 U	2.2 U
BARIUM	10.1	4.2	9.9	21.6	34.7	6.4
BERYLLIUM	0.22 U	0.24 U	0.22 U	0.23 U	0.29 U	0.22 U
CADMIUM	1.1 U	1.2 U	1.1 U	1.3	1.4 U	1.1 U
CALCIUM	587	259	439	847	1270	130
CHROMIUM	4.8	2.4 U	4.4	8.5	6.6	3.2
COBALT	4.5 U	4.8 U	4.4 U	4.5 U	5.7 U	4.3 U
COPPER	2.2 U	2.4 U	7.7	61.4	29.4	2.2 U
IRON	1010	571	1010	4290	3640	992
LEAD	3.1	3.7	12.1	129	59.2	4.9
MAGNESIUM	122	57.7	80.7	193	223	82.1
MANGANESE	4.9	10.1	11.5	132	60.2	13.3
MERCURY	0.11 U	0.12 U	0.11 U	0.11 U	0.14 U	0.11 U
NICKEL	4.5 U	4.8 U	4.4 U	4.5 U	5.7 U	4.3 U
POTASSIUM	223 U	240 U	220 U	225 U	287 U	217 U
SELENIUM	1.1 U	1.2 U	1.1 U	1.1 U	1.4 U	1.1 U
SILVER	1.1 U	1.2 U	1.1 U	1.1 U	1.4 U	1.1 U
SODIUM	44.6 U	48 U	44 U	45 U	110	43.5 U
THALLIUM	2.2 U	2.4 U	2.2 U	2.3 U	2.9 U	2.2 U
VANADIUM	3.5	2.4 U	3.4	8.9	5.3	3.5
ZINC	5.5	11.4	30.6	480	158	10.1

LOCATION	
DATE COLLECTED	
DEPTH	
MOISTURE	

ANALYTES (mg/kg) ALUMINUM 3680 ANTIMONY 11.8 ARSENIC 2.2 U BARIUM 31.8 BERYLLIUM 0.22 U CADMIUM 1.1 U CALCIUM 1230 CHROMIUM 8.2 COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
ANTIMONY 11.8 ARSENIC 2.2 U BARIUM 31.8 BERYLLIUM 0.22 U CADMIUM 1.1 U CALCIUM 1230 CHROMIUM 8.2 COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
ARSENIC2.2 UBARIUM31.8BERYLLIUM0.22 UCADMIUM1.1 UCALCIUM1230CHROMIUM8.2COBALT11.5COPPER672IRON9170LEAD210
BARIUM31.8BERYLLIUM0.22 UCADMIUM1.1 UCALCIUM1230CHROMIUM8.2COBALT11.5COPPER672IRON9170LEAD210
BERYLLIUM 0.22 U CADMIUM 1.1 U CALCIUM 1230 CHROMIUM 8.2 COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
CADMIUM1.1 UCALCIUM1230CHROMIUM8.2COBALT11.5COPPER672IRON9170LEAD210
CALCIUM 1230 CHROMIUM 8.2 COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
CHROMIUM 8.2 COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
COBALT 11.5 COPPER 672 IRON 9170 LEAD 210
COPPER 672 IRON 9170 LEAD 210
IRON 9170 LEAD 210
LEAD 210
LEAD
MAGNESIUM 136
MANGANESE 223
MERCURY 0.11 U
NICKEL 4.8
POTASSIUM 221 U
SELENIUM 1.5
SILVER 4.2
SODIUM 44.2 U
THALLIUM 2.2 U
VANADIUM 9.1
ZINC 418

65-TP07 05/07/95

LOCATION DATE COLLECTED DEPTH MOISTURE	MINIMUM	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	1020	10600	65-SB07-04	19/19
ANTIMONY	10.5 U	14.4 U	11.8	11.8	65-TP07	1/19
ARSENIC	2.1 U	2.9 U	2.6	3.3	65-SB06-02	3/19
BARIUM	NA	NA	2.7	38.3	65-SB06-02	19/19
BERYLLIUM	0.21 U	0.29 U	ND	ND		0/19
CADMIUM	1 ປ	1.4 U	1.3	1.3	65-TP04	2/19
CALCIUM	57.4 U	57.4 U	49.8	1350	65-SB06-02	18/19
CHROMIUM	2.3 U	2.4 U	2.6	17.3	65-SB07-04	16/19
COBALT	4.3 U	8.7 U	11.5	11.5	65-TP07	1/19
COPPER	2.1 U	2.7 U	7.7	672	65-TP07	8/19
IRON	NA	NA	236 J	31300	65-SB06-02	19/19
LEAD	NA	NA	1.6	539	65-SB06-02	19/19
MAGNESIUM	NA	NA	23.8	410	65-SB07-04	19/19
MANGANESE	NA	NA	2	471	65-SB06-02	19/19
MERCURY	0.1 U	0.14 U	ND	ND		0/19
NICKEL	4.2 U	5.7 U	4.8	243	65-SB06-02	3/19
POTASSIUM	210 U	287 U	253	453	65-SB07-04	4/19
SELENIUM	1 U	1.4 U	1.5	1.5	65-TP07	1/19
SILVER	1 U	1.4 U	4.2	4.2	65-TP07	1/19
SODIUM	43.5 U	48 U	50.8	130	65-SB07-04	5/19
THALLIUM	2.1 U	2.9 U	4.2	4.2	65-SB06-02	1/19
VANADIUM	2.2 U	2.4 U	3.1	27.2	65-SB07-04	15/19
ZINC	3.7 U	6.9 U	2.5 J	764	65-SB06-02	16/19

APPENDIX 0.5 GROUNDWATER ORGANICS

,

	65-DW01-01	65-DW02-01	65-DW02-02	65-DW04-01	65-MW01A-01	65-MW02A-01
DATE COLLECTED	05/08/95	05/09/95	05/18/95	05/16/95	05/08/95	05/09/95
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U				
BROMOMETHANE	10 U	10 U				
VINYL CHLORIDE	10 U	10 U				
CHLOROETHANE	10 UJ	10 U	10 U	10 U	10 UJ	10 U
METHYLENE CHLORIDE	10 U	1 J	10 U	10 U	10 U	1 J
ACETONE	10 U	5 J	5 J	10 U	10 U	5 J
CARBON DISULFIDE	10 U	10 U				
1.1-DICHLOROETHENE	10 U	10 U				
1,1-DICHLOROETHANE	10 U	10 U				
1,2-DICHLOROETHENE	10 U	10 U				
CHLOROFORM	10 U	10 U				
1,2-DICHLOROETHANE	2 J	2 J	10 U	10 U	2 J	10 U
2-BUTANONE	10 U	10 U				
1,1,1-TRICHLOROETHANE	10 U	10 U				
CARBON TETRACHLORIDE	10 U	10 U				
BROMODICHLOROMETHANE	10 U	10 U				
1,2-DICHLOROPROPANE	10 U	10 U				
CIS-1,3-DICHLOROPROPENE	10 U	10 U				
TRICHLOROETHENE	10 U	10 U				
DIBROMOCHLOROMETHANE	10 U	10 U				
1,1,2-TRICHLOROETHANE	10 U	10 U				
BENZENE	10 U	10 U				
TRANS-1,3-DICHLOROPROPENE	10 U	10 U				
BROMOFORM	10 U	10 U				
4-METHYL-2-PENTANONE	10 U	10 U				
2-HEXANONE	10 U	10 U				
TETRACHLOROETHENE	10 U	10 U				
1,1,2,2-TETRACHLOROETHANE	10 U	10 U				
TOLUENE	10 U	10 U				
CHLOROBENZENE	10 U	10 U				
ETHYLBENZENE	10 U	10 U				
STYRENE	10 U	10 U				
TOTAL XYLENES	10 U	10 U				

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
VOLATILES (ug/L) CHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U	10 U	10 U
METHYLENE CHLORIDE	100 1 J	10 U	10 U	2 J	1 J
ACETONE	7 J	10 C 14 U	5 J	2 J 7 J	5 J
CARBON DISULFIDE	10 U	5 J	10 U	10 U	10 U
1.1-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROETHANE	2 J	2 J	2 J	2 J	2 J
2-BUTANONE	1 J	10 U	1 J	1 J	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U .	10 U	10 U
BROMOFORM	10 U	10 U	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U	10 U	10 U

•

.

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/11
BROMOMETHANE	10 U	10 U	ND	ND		0/11
VINYL CHLORIDE	10 U	10 U	ND	ND		0/11
CHLOROETHANE	10 UJ	10 UJ	ND	ND		0/11
METHYLENE CHLORIDE	10 U	10 U	1 J	2 J	65-MW06A-01	6/11
ACETONE	10 U	14 U	5 J	7 J	65-MW06A-01	7/11
CARBON DISULFIDE	10 U	10 U	5 J	5 J	65-MW04A-01	1/11
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/11
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/11
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/11
CHLOROFORM	10 U	10 U	ND	ND		0/11
1,2-DICHLOROETHANE	10 U	10 U	2 J	2 J	65-MW07A-01	8/11
2-BUTANONE	10 U	10 U	1 J	1 J	65-MW06A-01	3/11
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/11
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/11
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/11
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/11
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/11
TRICHLOROETHENE	10 U	10 U	ND	ND		0/11
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/11
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/11
BENZENE	10 U	10 U	ND	ND		0/11
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/11
BROMOFORM	10 U	10 U	ND	ND		0/11
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/11
2-HEXANONE	10 U	10 U	ND	ND		0/11
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/11
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/11
TOLUENE	10 U	10 U	ND	ND		0/11
CHLOROBENZENE	10 U	10 U	ND	ND		0/11
ETHYLBENZENE	10 U	10 U	ND	ND		0/11
STYRENE	10 U	10 U	ND	ND		0/11
TOTAL XYLENES	10 U	10 U	ND	ND		0/11

۰.

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
DATE COLLECTED	00/00/00	00/00/00	00/10/00	00/10/00	00/00/00	00/03/30
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U				
BIS(2-CHLOROETHYL)ETHER	10 U	10 U				
2-CHLOROPHENOL	10 U	10 U				
1,3-DICHLOROBENZENE	10 U	10 U				
1,4-DICHLOROBENZENE	10 U	10 U				
1,2-DICHLOROBENZENE	10 U	10 U				
2-METHYLPHENOL	10 U	10 U				
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U				
4-METHYLPHENOL	10 U	10 U				
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U				
HEXACHLOROETHANE	10 U	10 U				
NITROBENZENE	10 U	10 U				
ISOPHORONE	10 U	10 U				
2-NITROPHENOL	10 U	10 U				
2,4-DIMETHYLPHENOL	10 U	10 U				
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U				
2,4-DICHLOROPHENOL	10 U	10 U				
1,2,4-TRICHLOROBENZENE	10 U	10 U				
NAPHTHALENE	10 U	10 U	10 U	3 J	10 U	10 U
4-CHLOROANILINE	10 U	10 U				
HEXACHLOROBUTADIENE	10 U	10 U				
4-CHLORO-3-METHYLPHENOL	10 U	10 U				
2-METHYLNAPHTHALENE	10 U	10 U				
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 U	10 R	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U				
2,4,5-TRICHLOROPHENOL	25 U	25 U				
2-CHLORONAPHTHALENE	10 U	10 U				
2-NITROANILINE	25 U	25 U				
DIMETHYL PHTHALATE	10 U	10 U				
ACENAPHTHYLENE	10 U	10 U				
2,6-DINITROTOLUENE	10 U	10 U				
3-NITROANILINE	25 U	25 U				
ACENAPHTHENE	10 U	10 U				
2,4-DINITROPHENOL	25 UJ	25 U	25 U	25 R	25 UJ	25 U
4-NITROPHENOL	25 U	25 U				
DIBENZOFURAN	10 U	10 U				

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01	65-MW02A-01
DATE COLLECTED	03/00/93	03/09/93	00/10/90	00/10/90	05/08/95	05/09/95
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U	10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	10 U	10 U	10 U	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U	10 U	10 U	10 U
FLUORENE	10 U	10 U	10 U	10 U	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	10 U	3 J	10 U	10 U	10 U	10 U
FLUORANTHENE	10 U	10 U	10 U	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	1 J	4 J	10 U	10 U	1 J	10 U
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U	10 U	10 U	10 U

~

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
DATE GOLLEGILD	00/00/00				
SEMIVOLATILES (ug/L)					
PHENOL	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U	10 U	10 U
4-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U	10 U	- 10 U
NITROBENZENE	10 U	10 U	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U	10 U	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U	10 U -	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBUTADIEŃE	10 U	10 U	10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 R	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	25 U	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U	10 U	10 U
2-NITROANILINE	25 U	25 U	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 R	25 U	25 U	25 U
4-NITROPHENOL	25 U	25 U	25 U	25 U	25 U
DIBENZOFURAN	10 U	10 U	10 U	10 U	10 U

LOCATION	65-MW03-01	65-MW04A-01	65-MW05A-01	65-MW06A-01	65-MW07A-01
DATE COLLECTED	05/09/95	05/16/95	05/09/95	05/09/95	05/09/95
SEMIVOLATILES (ug/L) cont.					
2,4-DINITROTOLUENE	10 U	10 U	10 U	10 U	10 U
DIETHYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U	10 U	10 U
FLUORENE	10 U	10 U	10 U	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	2 J	10 U	10 U	10 U	6 J
FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	2 J	10 U	10 U	10 U	6 J
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U	10 U	10 U

			ICL ORGANICS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/11
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/11
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/11
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/11
1.4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/11
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/11
2-METHYLPHENOL	10 U	10 U	ND	ND		0/11
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/11
4-METHYLPHENOL	10 U	10 U	ND	ND		0/11
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/11
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/11
NITROBENZENE	10 U	10 U	ND	ND		0/11
ISOPHORONE	10 U	10 U	ND	ND		0/11
2-NITROPHENOL	10 U	10 U	ND	ND		0/11
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/11
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/11
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/11
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/11
NAPHTHALENE	10 U	10 U	.3 J	3 J	65-DW04-01	1/11
4-CHLOROANILINE	10 U	10 U	ND	ND		0/11
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/11
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/11
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/11
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/9
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/11
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/11
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/11
2-NITROANILINE	25 U	25 U	ND	ND		0/11
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/11
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/11
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/11
3-NITROANILINE	25 U	25 U	ND	ND		0/11
ACENAPHTHENE	10 U	10 U	ND	ND		0/11
2,4-DINITROPHENOL	25 UJ	25 UJ	ND	ND		0/9
4-NITROPHENOL	25 U	25 U	ND	ND		0/11
DIBENZOFURAN	10 U	10 U	ND	ND		0/11

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/11
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/11
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/11
FLUORENE	10 U	10 U	ND	ND		0/11
4-NITROANILINE	25 U	25 U	ND	ND		0/11
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/11
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/11
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/11
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/11
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/11
PHENANTHRENE	10 U	10 U	ND	ND		0/11
ANTHRACENE	10 U	10 U	ND	ND		0/11
CARBAZOLE	10 U	10 U	ND	ND		0/11
DI-N-BUTYL PHTHALATE	10 U	10 U	2 J	.6 J	65-MW07A-01	3/11
FLUORANTHENE	10 U	10 U	ND	ND		0/11
PYRENE	10 U	10 U	ND	ND		0/11
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/11
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/11
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/11
CHRYSENE	10 U	10 U	ND	ND		0/11
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	1 J	6 J	65-MW07A-01	5/11
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/11
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/11
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/11
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/11
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/11
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/11
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/11

 \sim

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
PESTICIDE/PCBS (ug/L)		0.05.11	0.05 U	0.05 UJ	0.05 UJ	0.05 U
ALPHA-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
BETA-BHC	0.05 UJ	0.05 U				
DELTA-BHC	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
GAMMA-BHC(LINDANE)	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
HEPTACHLOR	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
ALDRIN	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
HEPTACHLOR EPOXIDE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
ENDOSULFAN I	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
DIELDRIN	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4-DDE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDRIN	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN II	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4'-DDD	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN SULFATE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
4,4'-DDT	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
METHOXYCHLOR	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U
ENDRIN KETONE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ENDRIN ALDEHYDE	0.1 UJ	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
ALPHA CHLORDANE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
GAMMA CHLORDANE	0.05 UJ	0.05 U	0.05 U	0.05 UJ	0.05 UJ	0.05 U
TOXAPHENE	5 UJ	5 U	5 U	5 UJ	5 UJ	5 U
PCB-1016	1 UJ	1 U	1 U -	1 UJ	1 UJ	1 U
PCB-1221	2 UJ	2 U	2 U	2 UJ	2 UJ	2 U
PCB-1232	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1242	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1248	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1254	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U
PCB-1260	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U

	65-MW03-01	65-MW04A-01	65-MW05A-01	65-MW06A-01	65-MW07A-01
DATE COLLECTED	05/09/95	05/16/95	05/09/95	05/09/95	05/09/95
PESTICIDE/PCBS (ug/L)					
ALPHA-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDRIN	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDOSULFAN II	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
METHOXYCHLOR	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
ENDRIN KETONE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 U	1 U	1 U
PCB-1221	2 U	2 U	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U	1 U	1 U
PCB-1242	-1 U	1 U	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U	1 U	1 U
PCB-1254	1 U	1 U	1 U	1 U	1 U
PCB-1260	1 U	1 U	1 U	1 U	1 U

EDEALISMAN (

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
PESTICIDE/PCBS (ug/L)						- ··· ·
ALPHA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
BETA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
DELTA-BHC	0.05 UJ	0.05 UJ	ND	ND		0/11
GAMMA-BHC(LINDANE)	0.05 UJ	0.05 UJ	ND	ND		0/11
HEPTACHLOR	0.05 UJ	0.05 UJ	ND	ND		0/11
ALDRIN	0.05 UJ	0.05 UJ	ND	ND		0/11
HEPTACHLOR EPOXIDE	0.05 UJ	0.05 UJ	ND	ND		0/11
ENDOSULFAN I	0.05 UJ	0.05 UJ	ND	ND		0/11
DIELDRIN	0.1 UJ	0.1 UJ	ND	ND		0/11
4,4'-DDE	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDRIN	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDOSULFAN II	0.1 UJ	0.1 UJ	ND	ND		0/11
4,4'-DDD	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDOSULFAN SULFATE	0.1 UJ	0.1 UJ	ND	ND		0/11
4,4'-DDT	0.1 UJ	0.1 UJ	ND	ND		0/11
METHOXYCHLOR	0.5 UJ	0.5 UJ	ND	ND		0/11
ENDRIN KETONE	0.1 UJ	0.1 UJ	ND	ND		0/11
ENDRIN ALDEHYDE	0.1 UJ	0.1 UJ	ND	ND		0/11
ALPHA CHLORDANE	0.05 UJ	0.05 UJ	ND	ND		0/11
GAMMA CHLORDANE	0.05 UJ	0.05 UJ	ND	ND		0/11
TOXAPHENE	5 UJ	5 UJ	ND	ND		0/11
PCB-1016	1 UJ	1 UJ	ND	ND		0/11
PCB-1221	2 UJ	2 UJ	ND	ND		0/11
PCB-1232	1 UJ	1 UJ	ND	ND		0/11
PCB-1242	1 UJ	1 UJ	ND	ND		0/11
PCB-1248	1 UJ	1 UJ	ND	ND		0/11
PCB-1254	1 UJ	1 UJ	ND	ND		0/11
PCB-1260	1 UJ	1 UJ	ND	ND		0/11

APPENDIX O.6 GROUNDWATER METALS

LOCATION DATE COLLECTED	65-DW01-01 05/08/95	65-DW02-01 05/09/95	65-DW02-02 05/18/95	65-DW04-01 05/16/95	65-MW01A-01 05/08/95	65-MW02A-01 05/09/95
ANALYTES (ug/L)						
ALUMINUM	233	40 U	40 U	322	40 U	68.5
ANTIMONY	50 U	50 U				
ARSENIC	10 U	10 U				
BARIUM	15.6 U	33.6	32.6	17.9	54.6	27.7
BERYLLIUM	1 U	1 U	1 U	1 U	1 U	1 U
CADMIUM	5 U	5 U	5 U	5 U	5 U	5 U
CALCIUM	52000	107000	116000	33600	146000	58200
CHROMIUM	10 U	10 U	10 U	10 U	10.2	10 U
COBALT	20 U	40.9	52.4	20 U	20.1	20 U
COPPER	10 U	10 U				
IRON	84.4	2060	2300	557	253	6580
LEAD	3 U	3 U	3 U	3.4	3 U	3 U
MAGNESIUM	2030	6120	6400	1200	16200	2470
MANGANESE	4.2	172	186	15.7	178	20.1
MERCURY	0.2 U	0.2 U				
NICKEL	20 U	53.1	59.6	20 U	20 U	20 U
POTASSIUM	3000	2150	2340	2440	5790	1590
SELENIUM	5 U	5 U	5 U	5 U	5 U	5 U
SILVER	5 U	5 U	5 U	5 U	5 U	5 U
SODIUM	6720	11000	11500	8240	10700	6350
THALLIUM	10 U	10 U				
VANADIUM	10 U	10 U				
ZINC	19.4	27.6	58.9	31.8	19.1	20.5

LOCATION DATE COLLECTED	65-MW03-01 05/09/95	65-MW04A-01 05/16/95	65-MW05A-01 05/09/95	65-MW06A-01 05/09/95	65-MW07A-01 05/09/95
ANALYTES (ug/L)					
ALUMINUM	40 U	121	40.3	421	138
ANTIMONY	50 U	50 U	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U	10 U	10 U
BARIUM	151	21	35.3	25.8	44.3
BERYLLIUM	1 U	1 U	1 U	1 U	1 U
CADMIUM	5 U -	5 U	5 U	5 U	5 U
CALCIUM	50500	2820	21100	2700	30400
CHROMIUM	10	10 U	10 U	10 U	10 U
COBALT	20 U	20 U	20 U	20 U	20.4
COPPER	10 U	10 U	10 U	10 U	10 U
IRON	41.9	57.9 U	232	1730	99.4
LEAD	3 U	3 U	3 U	3 U	3 U
MAGNESIUM	5160	2550	7810	2890	8160
MANGANESE	6.6	3	52.8	28.7	87.8
MERCURY	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
NICKEL	20 U	20 U	20 U	20 U	20 U
POTASSIUM	3650	1000 U	4030	1200	7940
SELENIUM	5 U	5 U	5 U	5 U	5 U
SILVER	5 U	5 U	5 U	5 U	5 U
SODIUM	5620	5880	11400	16400	9390
THALLIUM	10 U	10 U	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U	10 U	10 U
ZINC	11	14.6 U	22.5	17.8	14.5

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
ANALYTES (ug/L)	40 U	40 U	40.3	421	65-MW06A-01	7/11
ALUMINUM	40 U	50 U	ND	ND		0/11
ANTIMONY	50 U 10 U	10 U	ND	ND		0/11
ARSENIC	15.6 U	15.6 U	17.9	151	65-MW03-01	10/11
BARIUM	15.6 U 1 U	10.00 1 U	ND	ND	03-101000-01	0/11
BERYLLIUM	5 U	5 U	ND	ND		0/11
CADMIUM	NA	NA	2700	146000	65-MW01A-01	11/11
CALCIUM	10 U	10 U	10	10.2	65-MW01A-01	2/11
CHROMIUM	20 U	20 U	20.1	52.4	65-DW02-02	4/11
COBALT		20 0 10 U	20.1 ND	ND	03-0402-02	0/11
COPPER	10 U			6580	65-MW02A-01	10/11
IRON	57.9 U	57.9 U	41.9 3.4	3.4	65-DW04-01	1/11
LEAD	3 U	3 U	1200		65-MW01A-01	11/11
MAGNESIUM	NA	NA NA	3	186	65-DW02-02	11/11
MANGANESE	NA		ND	ND	03-04402-02	0/11
MERCURY	0.2 U	0.2 U			65-DW02-02	2/11
NICKEL	20 U	20 U	53.1	59.6		
POTASSIUM	1000 U	1000 U	1200	7940	65-MW07A-01	10/11
SELENIUM	5 U	5 U	ND	ND		0/11
SILVER	5 U	5 U	ND	ND		0/11
SODIUM	NA	NA	5620	16400	65-MW06A-01	11/11
THALLIUM	10 U	10 U	ND	ND		0/11
VANADIUM	10 U	10 U	ND	ND		0/11
ZINC	14.6 U	14.6 U	11	58.9	65-DW02-02	10/11

	• • • • • • • •
LOCATION	65-MW01AF-01
DATE COLLECTED	05/08/95
ANALYTES (ug/L)	
ALUMINUM	40 U
ANTIMONY	50 U
ARSENIC	10 U
BARIUM	61.4
BERYLLIUM	1 U
CADMIUM	5 U
CALCIUM	161000
CHROMIUM	10 U
COBALT	20 U
COPPER	10 U
IRON	187
LEAD	3 U
MAGNESIUM	18300
MANGANESE	182
MERCURY	0.2 U
NICKEL	20 U
POTASSIUM	6220
SELENIUM	5 U
SILVER	5 U
SODIUM	11900
THALLIUM	10 U
VANADIUM	10 U
ZINC	5.1 U

APPENDIX 0.7 SURFACE WATER ORGANICS

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
VOLATILES (ug/L)		
CHLOROMETHANE	10 U	10 U
BROMOMETHANE	10 U	10 U
VINYL CHLORIDE	10 U	10 U
CHLOROETHANE	10 U	10 U
METHYLENE CHLORIDE	10 U	10 U
ACETONE	5 J	10 U
CARBON DISULFIDE	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U
CHLOROFORM	10 U	10 U
1,2-DICHLOROETHANE	1 J	1 J
2-BUTANONE	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U
BROMODICHLOROMETHANE	10 U 10 U	10 U 10 U
	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U
BENZENE	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U
BROMOFORM	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U
2-HEXANONE	10 U	10 U
TETRACHLOROETHENE	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U
TOLUENE	10 U	10 U
CHLOROBENZENE	10 U	10 U
ETHYLBENZENE	10 U	10 U
STYRENE	10 U	10 U
TOTAL XYLENES	10 U	10 U

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/2
BROMOMETHANE	10 U	10 U	ND	ND		0/2
VINYL CHLORIDE	10 U	10 U	ND	ND		0/2
CHLOROETHANE	10 U	10 U	ND	ND		0/2
METHYLENE CHLORIDE	10 U	10 U	ND	ND		0/2
ACETONE	10 U	10 U	5 J	5 J	65-SW04-01	1/2
CARBON DISULFIDE	10 U	10 U	ND	ND		0/2
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/2
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/2
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/2
CHLOROFORM	10 U	10 U	ND	ND		0/2
1,2-DICHLOROETHANE	NA	NA	1 J	1 J	65-SW05-01	2/2
2-BUTANONE	10 U	10 U	ND	ND		0/2
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/2
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/2
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/2
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/2
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/2
TRICHLOROETHENE	10 U	10 U	ND	ND		0/2
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/2
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/2
BENZENE	10 U	10 U	ND	ND		0/2
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/2
BROMOFORM	10 U	10 U	ND	ND		0/2
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/2
2-HEXANONE	10 U	10 U	ND	ND		0/2
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/2
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/2
TOLUENE	10 U	10 U	ND	ND		0/2
CHLOROBENZENE	10 U	10 U	ND	ND		0/2
ETHYLBENZENE	10 U	10 U	ND	ND		0/2
STYRENE	10 U	10 U	ND	ND		0/2
TOTAL XYLENES	10 U	10 U	ND	ND		0/2

n .

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
SEMIVOLATILES (ug/L)		
PHENOL	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U
2-CHLOROPHENOL	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U
2-METHYLPHENOL	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U
4-METHYLPHENOL	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U
HEXACHLOROETHANE	10 U	10 U
NITROBENZENE	10 U	10 U
ISOPHORONE	10 U	10 U
2-NITROPHENOL	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U
NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE	10 U	10 U
4-CHLOROANILINE	10 U	10 U
HEXACHLOROBUTADIENE	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 R
2,4,6-TRICHLOROPHENOL	10 U	10 U
HEXACHLOROCYCLOPENTADIENE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U
2-NITROANILINE	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U
ACENAPHTHYLENE	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U
3-NITROANILINE	25 U	25 U
ACENAPHTHENE		10 U
2,4-DINITROPHENOL	25 U	25 R
4-NITROPHENOL	25 U	25 U
DIBENZOFURAN	10 U	10 U

DATE COLLECTED 05/15/95 05/16/95 SEMIVOLATILES (ug/L) cont. 10 U 10 U 2,4-DINITROTOLUENE 10 U 10 U DIETHYL PHTHALATE 10 U 10 U 4-CHLOROPHENYL PHENYL ETHER 10 U 10 U 4-CHLOROPHENYL PHENYL ETHER 10 U 10 U 4-CHLOROPHENYL ETHER 10 U 10 U 4-NITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U 4,6-DINITRO-2-METHYLPHENYL ETHER 10 U 10 U 4,6-DINTROSODIPHENYL AMINE 10 U 10 U 4-SEMOMOPHENYL PHENYL ETHER 10 U 10 U PENTACHLOROBENZENE 10 U 10 U ANTHRACENE 10 U 10 U ANTHRACENE	LOCATION	65-SW04-01	65-SW05-01
2,4-DINITROTOLUENE 10 U 10 U DIETHYL PHTHALATE 10 U 10 U 4-CHLOROPHENYLPHENYL ETHER 10 U 10 U 4-CHLOROPHENYLPHENYL ETHER 10 U 10 U 4-VITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U FLUORANTHENE 10 U 10 U 9/RENE 10 U 10 U 9/RENE <td>DATE COLLECTED</td> <td>05/15/95</td> <td>05/16/95</td>	DATE COLLECTED	05/15/95	05/16/95
2,4-DINITROTOLUENE 10 U 10 U DIETHYL PHTHALATE 10 U 10 U 4-CHLOROPHENYLPHENYL ETHER 10 U 10 U 4-CHLOROPHENYLPHENYL ETHER 10 U 10 U 4-VITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U FLUORANTHENE 10 U 10 U 9/RENE 10 U 10 U 9/RENE <td></td> <td></td> <td></td>			
DIETHYL PHTHALATE 10 U 10 U 4-CHLOROPHENYLPHENYL ETHER 10 U 10 U FLUORENE 10 U 10 U 4-NITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE <td></td> <td>· · · · ·</td> <td></td>		· · · · ·	
4-CHLOROPHENYLPHENYL ETHER 10 14 NITROANILINE 25 10 25 10 1	•		+
FLUORENE 10 U 10 U 4-NITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U BUS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLORANTHENE 10 U 10			
4-NITROANILINE 25 U 25 U 4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U IBENZO(A,H)ANTHRACENE 10 U 10 U </td <td></td> <td></td> <td></td>			
4,6-DINITRO-2-METHYLPHENOL 25 U 25 U N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U UCHRYSENE 10 U 10 U BUS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U <tr< td=""><td></td><td></td><td></td></tr<>			
N-NITROSODIPHENYLAMINE 10 U 10 U 4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U IDENZO(A)PYRENE 10 U			
4-BROMOPHENYL PHENYL ETHER 10 U 10 U HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U IDBENZO(A,H)ANTHRACENE 10 U <	•		
HEXACHLOROBENZENE 10 U 10 U PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U BUSZO(A)ANTHRACENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U			- +
PENTACHLOROPHENOL 25 U 25 U PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U UCHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U DIENZO(A)PYRENE 10 U 10 U IDBENZO(A,H)ANTHRACENE 10 U 10 U			
PHENANTHRENE 10 U 10 U ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U 3,3-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U UCHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U			
ANTHRACENE 10 U 10 U CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U SJ-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U			25 U
CARBAZOLE 10 U 10 U DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U 3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U			
DI-N-BUTYL PHTHALATE 10 U 10 U FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U 3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U UCHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U			10 U
FLUORANTHENE 10 U 10 U PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U 3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U UCHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U		10 U	10 U
PYRENE 10 U 10 U BUTYL BENZYL PHTHALATE 10 U 10 U 3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U CHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	DI-N-BUTYL PHTHALATE	10 U	10 U
BUTYL BENZYL PHTHALATE 10 U 10 U 3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U CHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	FLUORANTHENE	10 U	10 U
3,3'-DICHLOROBENZIDINE 10 U 10 U BENZO(A)ANTHRACENE 10 U 10 U CHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	PYRENE	10 U	10 U
BENZO(A)ANTHRACENE 10 U 10 U CHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U		•	10 U
CHRYSENE 10 U 10 U BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	3,3'-DICHLOROBENZIDINE	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE 10 U 10 U DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	BENZO(A)ANTHRACENE	10 U	10 U
DI-N-OCTYL PHTHALATE 10 U 10 U BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	CHRYSENE	10 U	10 U
BENZO(B)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U
BENZO(K)FLUORANTHENE 10 U 10 U BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	DI-N-OCTYL PHTHALATE	10 U	10 U
BENZO(A)PYRENE 10 U 10 U INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	BENZO(B)FLUORANTHENE	10 U	10 U
INDENO(1,2,3-CD)PYRENE 10 U 10 U DIBENZO(A,H)ANTHRACENE 10 U 10 U	BENZO(K)FLUORANTHENE	10 U	10 U
DIBENZO(A,H)ANTHRACENE 10 U 10 U	BENZO(A)PYRENE	10 U	10 U
		10 U	10 U
	DIBENZO(A,H)ANTHRACENE	10 U	10 U
		10 U	10 U

			ICL ORGANICS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/2
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/2
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/2
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
1,4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/2
2-METHYLPHENOL	10 U	10 U	ND	ND		0/2
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/2
4-METHYLPHENOL	10 U	10 U	ND	ND		0/2
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/2
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/2
NITROBENZENE	10 U	10 U	ND	ND		0/2
ISOPHORONE	10 U	10 U	ND	ND		0/2
2-NITROPHENOL	10 U	10 U	ND	ND		0/2
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/2
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/2
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/2
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/2
NAPHTHALENE	10 U	10 U	ND	ND		0/2
4-CHLOROANILINE	10 U	10 U	ND	ND		0/2
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/2
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/2
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/2
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/1
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/2
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ŅD		0/2
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/2
2-NITROANILINE	25 U	25 U	ND	ND		0/2
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/2
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/2
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/2
3-NITROANILINE	25 U	25 U	ND	ND		0/2
ACENAPHTHENE	10 U	10 U	ND	ND		0/2
2,4-DINITROPHENOL	25 U	25 U	ND	ND		0/1
4-NITROPHENOL	25 U	25 U	ND	ND		0/2
DIBENZOFURAN	10 U	10 U	ND	ND		0/2

			ICL UNGANICO			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.	10 U	40.11	ND	NB		0/0
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/2
		10 U	ND	ND		0/2
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/2
FLUORENE	10 U	10 U	ND	ND		0/2
4-NITROANILINE	25 U	25 U	ND	ND		0/2
4,6-DINITRO-2-METHYLPHENOL	25 U	25 Û	ND	ND		0/2
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/2
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/2
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/2
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/2
PHENANTHRENE	10 U	10 U	ND	ND		0/2
ANTHRACENE	10 U	10 U	ND	ND		0/2
CARBAZOLE	10 U	10 U	ND	ND		0/2
DI-N-BUTYL PHTHALATE	10 U	10 U	ND	ND		0/2
FLUORANTHENE	10 U	10 U	ND	ND		0/2
PYRENE	10 U	10 U	ND	ND		0/2
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/2
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/2
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/2
CHRYSENE	10 U	10 U	ND	ND		0/2
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	ND	ND		0/2
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/2
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/2
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/2
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/2
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/2
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/2
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/2

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
PESTICIDE/PCBS (ug/L)		
ALPHA-BHC	0.05 U	0.05 UJ
BETA-BHC	0.05 U	0.05 UJ
DELTA-BHC	0.05 U	0.05 UJ
GAMMA-BHC(LINDANE)	0.05 U	0.05 UJ
HEPTACHLOR	0.05 U	0.05 UJ
ALDRIN	0.05 U	0.05 UJ
HEPTACHLOR EPOXIDE	0.05 U	0.05 UJ
ENDOSULFAN I	0.05 U	0.05 UJ
DIELDRIN	0.1 U	0.1 UJ
4,4'-DDE	0.1 U	0.1 UJ
ENDRIN	0.1 U	0.1 UJ
ENDOSULFAN II	0.1 U	0.1 UJ
4,4'-DDD	0.1 U	0.1 UJ
ENDOSULFAN SULFATE	0.1 U	0.1 UJ
4,4'-DDT	0.1 U	0.1 UJ
METHOXYCHLOR	0.5 U	0.5 UJ
ENDRIN KETONE	0.1 U	0.1 UJ
ENDRIN ALDEHYDE	0.1 U	0.1 UJ
ALPHA CHLORDANE	0.05 U	0.05 UJ
GAMMA CHLORDANE	0.05 U	0.05 UJ
TOXAPHENE	5 U	5 UJ
PCB-1016	1 U	1 UJ
PCB-1221	2 U	2 UJ
PCB-1232	1 U	1 UJ
PCB-1242	1 U	1 UJ
PCB-1248	1 U	1 UJ
PCB-1254	1 U	1 UJ
PCB-1260	1 U	1 UJ

LOCATION DATE COLLECTED MINIMUM NONDETECTED MAXIMUM NONDETECTED MINIMUM DETECTED MAXIMUM DETECTED DETECTED DETECTED <							
ALPHA-BHC 0.05 U 0.05 U ND ND ND 02 BETA-BHC 0.05 U 0.05 U 0.05 U ND ND 02 GAMMA-BHC(LNDANE) 0.05 U 0.05 U 0.05 U ND ND 02 ALDRIN 0.05 U 0.05 U 0.05 U ND ND 02 ALDRIN 0.05 U 0.05 U ND ND ND 02 HEPTACHLOR 0.05 U 0.05 U ND ND 02 02 ALDRIN 0.05 U 0.05 U 0.05 U ND ND 02 ENDOSULFAN I 0.05 U 0.02 0.02						MAXIMUM	OF
BETA-BHC 0.05 U 0.05 U ND ND ND OP DELTA-BHC 0.05 U 0.05 U ND ND ND OP GAMMA-BHC(LINDANE) 0.05 U 0.05 U ND ND ND OP HEPTACHLOR 0.05 U 0.05 U ND ND ND OP ALDRIN 0.05 U 0.05 U ND ND ND OP HEPTACHLOR 0.05 U 0.05 U ND ND OP OP ENDOSULFAN1 0.05 U 0.05 U ND ND ND OP DIELDRIN 0.1 U 0.1 U ND ND ND OP 4,4-DDE 0.1 U 0.1 U ND ND ND OP ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND OP ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND OP ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND OP	PESTICIDE/PCBS (ug/L)						
DELTA-BHC 0.05 U 0.05 U 0.05 U ND ND ND 0/2 GAMMA-BHC(LINDANE) 0.05 U 0.05 U 0.05 U ND ND 0/2 ALDRIN 0.05 U 0.05 U ND ND ND 0/2 ALDRIN 0.05 U 0.05 U ND ND ND 0/2 HEPTACHLOR 0.05 U 0.05 U ND ND ND 0/2 HEPTACHLOR EPOXIDE 0.05 U 0.05 U ND ND ND 0/2 ENDOSULFAN I 0.05 U 0.05 U ND ND 0/2 0/2 JELEDRIN 0.1 U 0.1 U ND ND 0/2	ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/2
GAMMABHC(LINDANE) 0.05 U 0.05 U ND ND ND 0/2 HEPTACHLOR 0.05 U 0.05 U ND ND ND 0/2 ALDRIN 0.05 U 0.05 U ND ND ND 0/2 HEPTACHLOR 0.05 U 0.05 U ND ND ND 0/2 HEDDSULFAN I 0.05 U 0.05 U ND ND 0/2 ENDOSULFAN I 0.05 U 0.05 U ND ND 0/2 4/4-DE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEMYDE 0.1 U <td< td=""><td>BETA-BHC</td><td>0.05 U</td><td>0.05 U</td><td>ND</td><td>ND</td><td></td><td>0/2</td></td<>	BETA-BHC	0.05 U	0.05 U	ND	ND		0/2
HEPTACHLOR 0.05 U 0.05 U ND ND ND 02 ALDRIN 0.05 U 0.05 U ND ND 0/2 HEPTACHLOR EPOXIDE 0.05 U 0.05 U ND ND 0/2 ENDOSULFAN I 0.05 U 0.05 U ND ND 0/2 DIELDRIN 0.1 U 0.1 U ND ND 0/2 4,4-DDE 0.1 U 0.1 U ND ND 0/2 ENDRIN 0.1 U 0.1 U ND ND 0/2 4,4-DDE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 METHOXYCHLOR 0.5 U 0.5 U ND ND 0/2 ENDRI	DELTA-BHC		0.05 U		ND		0/2
ALDRIN 0.05 U 0.05 U ND ND ND 02 HEPTACHLOR EPOXIDE 0.05 U 0.05 U ND ND 0/2 ENDOSULFAN I 0.05 U 0.05 U ND ND 0/2 DIELDRIN 0.1 U 0.1 U ND ND 0/2 4,4-DE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 ENDRIN 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN III 0.1 U 0.1 U ND ND 0/2 4,4-DD 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 GAUMACHAN SULFATE 0.1 U 0.1 U ND ND 0/2	GAMMA-BHC(LINDANE)	0.05 U	0.05 U	ND	ND		0/2
HEPTACHLOR EPOXIDE 0.05 U 0.05 U ND ND 02 ENDOSULFAN I 0.05 U 0.05 U ND ND 02 DIELDRIN 0.1 U 0.1 U ND ND 02 4,4-DDE 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 ENDOSULFAN II 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFAN II 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 02 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 02 ENDRIN KETONE 0.1 U 0.1 U ND ND 02 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 02	HEPTACHLOR				ND		0/2
ENDOSULFAN 1 0.05 U 0.05 U ND ND ND 02 DIELDRIN 0.1 U 0.1 U ND ND 02 4,4-DDE 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 ENDOSULFAN II 0.1 U 0.1 U ND ND 02 4,4-DDD 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 02 METHOXYCHLOR 0.5 U 0.5 U ND ND 02 ENDRIN KETONE 0.1 U 0.1 U ND ND 02 ENDRIN KETONE 0.1 U 0.1 U ND ND 02 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 02	ALDRIN			ND	Ý ND		0/2
DIELDRIN 0.1 U 0.1 U ND ND 02 4,4-DDE 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 ENDRIN 0.1 U 0.1 U ND ND 02 4,4-DD 0.1 U 0.1 U ND ND 02 4,4-DD 0.1 U 0.1 U ND ND 02 4,4-DDT 0.1 U 0.1 U ND ND 02 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 02 ENDRIN KETONE 0.5 U 0.5 U ND ND 02 ENDRIN KETONE 0.1 U 0.1 U ND ND 02 ENDRIN KETONE 0.5 U 0.5 U ND ND 02 ENDRIN KETONE 0.05 U 0.05 U ND ND 02 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 02 PCB-1016 1 U	HEPTACHLOR EPOXIDE	0.05 U	0.05 U				0/2
4.4-DDE 0.1 U 0.1 U ND ND ND 0/2 ENDRIN 0.1 U 0.1 U ND ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U ND ND 0/2 0/2 PCB-1016 1 U 1 U ND ND	ENDOSULFAN I	0.05 U	0.05 U	ND	ND		0/2
ENDRIN 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN II 0.1 U 0.1 U ND ND 0/2 4,4-DD 0.1 U 0.1 U ND ND 0/2 4,4-DD 0.1 U 0.1 U ND ND 0/2 4,4-DD 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 METHOXYCHLOR 0.5 U 0.5 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1241 2 U 2 U ND ND 0/2 PCB-1232 1 U	DIELDRIN	0.1 U	0.1 U	ND	ND		0/2
ENDOSULFAN II 0.1 U 0.1 U 0.1 U ND ND ND 0/2 4,4-DD 0.1 U 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 4,4-DT 0.1 U 0.1 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 0/2 PCB-1232 1 U 1 U N	4,4'-DDE	0.1 U	0.1 U	ND	ND		0/2
4,4-DDD 0.1 U 0.1 U ND ND 0/2 ENDOSULFAN SULFATE 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 4,4-DDT 0.1 U 0.1 U ND ND 0/2 METHOXYCHLOR 0.5 U 0.5 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1244 <t< td=""><td>ENDRIN</td><td></td><td></td><td></td><td></td><td></td><td>0/2</td></t<>	ENDRIN						0/2
ENDOSULFAN SULFATE 0.1 U 0.1 U 0.1 U ND ND 02 4,4'-DDT 0.1 U 0.1 U 0.1 U ND ND 0/2 METHOXYCHLOR 0.5 U 0.5 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2	ENDOSULFAN II	0.1 U	0.1 U	ND	ND		0/2
4,4-DDT 0.1 U 0.1 U ND ND ND 0/2 METHOXYCHLOR 0.5 U 0.5 U ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U	4,4'-DDD	0.1 U	0.1 U	ND			0/2
METHOXYCHLOR 0.5 U 0.5 U ND ND ND 0/2 ENDRIN KETONE 0.1 U 0.1 U ND ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U ND ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	ENDOSULFAN SULFATE	0.1 U	0.1 U	ND	ND		0/2
ENDRIN KETONE 0.1 U 0.1 U ND ND ND 0/2 ENDRIN ALDEHYDE 0.1 U 0.1 U 0.1 U ND ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND 0/2 TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	4,4'-DDT	0.1 U	0.1 U	ND	ND		0/2
ENDRIN ALDEHYDE 0.1 U 0.1 U 0.1 U ND ND ND 0/2 ALPHA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 TOXAPHENE 5 U 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/2
ALPHA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 GAMMA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 TOXAPHENE 5 U 5 U ND ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	ENDRIN KETONE	0.1 U	0.1 U	ND	ND		0/2
GAMMA CHLORDANE 0.05 U 0.05 U ND ND ND 0/2 TOXAPHENE 5 U 5 U ND ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/2
TOXAPHENE 5 U 5 U ND ND 0/2 PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	ALPHA CHLORDANE	0.05 U	0.05 U				0/2
PCB-1016 1 U 1 U ND ND 0/2 PCB-1221 2 U 2 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	GAMMA CHLORDANE		0.05 U	ND	ND		0/2
PCB-1221 2 U 2 U ND ND O/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	TOXAPHENE	5 U	5 U	ND	ND		0/2
PCB-1232 1 U 1 U ND ND 0/2 PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	PCB-1016	1.0	1 U	ND	ND		0/2
PCB-1242 1 U 1 U ND ND 0/2 PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	PCB-1221	2 U 1	2 U	ND	ND		0/2
PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	PCB-1232	1 U	1 U	ND	ND		0/2
PCB-1248 1 U 1 U ND ND 0/2 PCB-1254 1 U 1 U ND ND 0/2	PCB-1242	1 U	1 U	ND	ND		0/2
PCB-1254 1 U 1 U ND ND 0/2	PCB-1248	1 U	1 U				
	PCB-1254	1 U	1 U	ND			

 $\hat{}$

APPENDIX O.8 SURFACE WATER METALS

LOCATION DATE COLLECTED	65-SW04-01 05/15/95	65-SW05-01 05/16/95
ANALYTES (ug/L)		
ALUMINUM	25800	40 U
ANTIMONY	50 U	50 U
ARSENIC	10 U	10 U
BARIUM	69.3	36.7
BERYLLIUM	1 U	1 U
CADMIUM	5 U	5 U
CALCIUM	12000	26800
CHROMIUM	27.6	10 U
COBALT	20 U	20 U
COPPER	41.1	10 U
IRON	7890	348
LEAD	45.8	3 U
MAGNESIUM	2060	2520
MANGANESE	88.4	57.3
MERCURY	0.2 U	0.2 U
NICKEL	20 U	20 U
POTASSIUM	2970	1000 U
SELENIUM	5 U	5 U
SILVER	5 U	5 U
SODIUM	3330	6320
THALLIUM	10 U	10 U
VANADIUM	26.2	10 U
ZINC	144	33.6

LOCATION DATE COLLECTED		MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DEIEOIED	DETECTED	DETECTION
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	25800	25800	65-SW04-01	1/2
ANTIMONY	50 U	50 U	ND	ND		0/2
ARSENIC	10 U	10 U	ND	ND		0/2
BARIUM	NA	NA	36.7	69.3	65-SW04-01	2/2
BERYLLIUM	1 U	1 U	ND	ND	00 0110+01	0/2
CADMIUM	5 U	5 U	ND	ND		0/2
CALCIUM	NĂ	NA	12000	26800	65-SW05-01	2/2
CHROMIUM	10 U	10 U	27.6	27.6	65-SW04-01	1/2
COBALT	20 U	20 U	ND	ND	03-3404-01	
	20 U	20 U			GE ENVOA DA	0/2
COPPER			41.1	41.1	65-SW04-01	1/2
IRON	NA	NA	348	7890	65-SW04-01	2/2
LEAD	3 U	3 U	45.8	45.8	65-SW04-01	1/2
MAGNESIUM	NA	NA	2060	2520	65-SW05-01	2/2
MANGANESE	NA	NA	57.3	88.4	65-SW04-01	2/2
MERCURY	0.2 U	0.2 U	ND	ND		0/2
NICKEL	20 U	20 U	ND	ND		0/2
POTASSIUM	1000 U	1000 U	2970	2970	65-SW04-01	1/2
SELENIUM	5 U	5 U	ND	ND		0/2
SILVER	5 U	5 U	ND	ND		0/2
SODIUM	NA	NA	3330	6320	65-SW05-01	2/2
THALLIUM	10 U	10 U	ND	ND		0/2
VANADIUM	10 U	10 U	26.2	26.2	65-SW04-01	1/2
ZINC	NA	NA	33.6	144	65-SW04-01	2/2
-						

APPENDIX 0.9 SEDIMENT ORGANICS

LOCATION DATE COLLECTED	65-SD04-06 05/16/95	65-SD04-612 05/16/95	65-SD05-06 05/17/95	65-SD05-612 05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
				• .=
VOLATILES (ug/kg)				
CHLOROMETHANE	38 U	43 U	32 U	29 U
BROMOMETHANE	38 U	43 U	32 U	29 U
VINYL CHLORIDE	38 U	43 U	32 U	29 U
CHLOROETHANE	38 U	43 U	32 U	29 U
METHYLENE CHLORIDE	38 U	43 U	35 U	29 U
ACETONE	220 J	190 J	260 J	450 J
CARBON DISULFIDE	38 UJ	43 UJ	32 UJ	29 UJ
1,1-DICHLOROETHENE	38 U	43 U	32 U	29 U
1,1-DICHLOROETHANE	38 U	43 U	32 U	29 U
1,2-DICHLOROETHENE	38 U	43 U	32 U	29 U
CHLOROFORM	79 J	43 U	32 U	29 U
1,2-DICHLOROETHANE	38 U	43 U	32 U	29 U
2-BUTANONE	94 J	79	72 J	88
1,1,1-TRICHLOROETHANE	38 U	43 U	32 U	29 U
CARBON TETRACHLORIDE	18 J	13 J	32 U	29 U
BROMODICHLOROMETHANE	38 U	43 U	32 U	29 U
1,2-DICHLOROPROPANE	38 U	43 U	32 U	29 U
CIS-1,3-DICHLOROPROPENE	38 U	43 U	32 U	29 U
TRICHLOROETHENE	38 U	43 U	32 U	29 U
DIBROMOCHLOROMETHANE	38 U	43 U	32 U	29 U
1,1,2-TRICHLOROETHANE	38 U	43 U	32 U	29 U
BENZENE	38 U	43 U	32 U	29 U
TRANS-1,3-DICHLOROPROPENE	38 U	43 U	32 U	29 U
BROMOFORM	38 U	43 U	32 U	29 U
4-METHYL-2-PENTANONE	38 UJ	43 UJ	32 UJ	29 U
2-HEXANONE	38 UJ	43 UJ	32 UJ	29 U
TETRACHLOROETHENE	15 J	6 J	32 UJ	29 U
1,1,2,2-TETRACHLOROETHANE	38 UJ	43 UJ	32 UJ	29 U
TOLUENE	7 J	43 UJ	6 J	3 J
CHLOROBENZENE	38 UJ	43 UJ	32 UJ	29 U
ETHYLBENZENE	38 UJ	43 UJ	32 UJ	29 U
STYRENE	38 UJ	43 UJ	32 UJ	29 U
TOTAL XYLENES	38 UJ	43 UJ	32 UJ	29 U

LOCATION DATE COLLECTED DEPTH		MAXIMUM NONDETECTED	MINIMUM	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/kg)						
CHLOROMETHANE	29 U	43 U	ND	ND		0/4
BROMOMETHANE	29 U	43 U	ND	ND		0/4
VINYL CHLORIDE	29 U	43 U	ND	ND		0/4
CHLOROETHANE	29 U	43 U	ND	ND		0/4
METHYLENE CHLORIDE	29 U	43 U	ND	ND		0/4
ACETONE	NA	NA	190 J	450 J	65-SD05-612	4/4
CARBON DISULFIDE	29 UJ	43 UJ	ND	ND		0/4
1,1-DICHLOROETHENE	29 U	≤ 43 U	ND	ND		0/4
1,1-DICHLOROETHANE	29 U	43 U	ND	ND		0/4
1,2-DICHLOROETHENE	29 U	43 U	ND	ND		0/4
CHLOROFORM	29 U	43 U	79 J	79 J	65-SD04-06	1/4
1,2-DICHLOROETHANE	29 U	43 U	ND	ND		0/4
2-BUTANONE	NA	NA	72 J	94 J	65-SD04-06	4/4
1,1,1-TRICHLOROETHANE	29 U	43 U	ND	ND		0/4
CARBON TETRACHLORIDE	29 U	32 U	13 J	18 J	65-SD04-06	2/4
BROMODICHLOROMETHANE	29 U	43 U	ND	ND		0/4
1,2-DICHLOROPROPANE	29 U	43 U	ND	ND		0/4
CIS-1,3-DICHLOROPROPENE	29 U	43 U	ND	ND		0/4
TRICHLOROETHENE	29 U	43 U	ND	ND		0/4
DIBROMOCHLOROMETHANE	29 U	43 U	ND	ND		0/4
1,1,2-TRICHLOROETHANE	29 U	43 U	ND	ND		0/4
BENZENE	29 U	43 U	ND	ND		0/4
TRANS-1,3-DICHLOROPROPENE	29 U	43 U	ND	ND		0/4
BROMOFORM	29 U	43 U	ND	ND		0/4
4-METHYL-2-PENTANONE	29 U	43 UJ	ND	ND		0/4
2-HEXANONE	29 U	43 UJ	ND	ND		0/4
TETRACHLOROETHENE	29 U	32 UJ	6 J	15 J	65-SD04-06	2/4
1,1,2,2-TETRACHLOROETHANE	29 U	43 UJ	ND	ND		0/4
TOLUENE	43 UJ	43 UJ	3 J	7 J	65-SD04-06	3/4
CHLOROBENZENE	29 U	43 UJ	ND	ND		0/4
ETHYLBENZENE	29 U	43 UJ	ND	ND		0/4
STYRENE	29 U	43 UJ	ND	ND		0/4
TOTAL XYLENES	29 U	43 UJ	ND	ND		0/4

n

LOCATION DATE COLLECTED	65-SD04-06 05/16/95	65-SD04-612 05/16/95	65-SD05-06 05/17/95	65-SD05-612 05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
	•••		••	• • •
SEMIVOLATILES (ug/kg)				
PHENOL	6200 U	7000 U	5200 U	4600 U
BIS(2-CHLOROETHYL)ETHER	6200 U	7000 U	5200 U	4600 U
2-CHLOROPHENOL	6200 U	7000 U	5200 U	4600 U
1,3-DICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
1,4-DICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
1,2-DICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
2-METHYLPHENOL	6200 U	7000 U	5200 U	4600 U
2,2'-OXYBIS(1-CHLOROPROPANE)	6200 U	7000 U	5200 U	4600 U
4-METHYLPHENOL	6200 U	7000 U	5200 U	4600 U
N-NITROSO-DI-N-PROPYLAMINE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROETHANE	6200 U	7000 U	5200 U	4600 U
NITROBENZENE	6200 U	7000 U	5200 U	4600 U
ISOPHORONE	6200 U	7000 U	5200 U	4600 U
2-NITROPHENOL	6200 U	7000 U	5200 U	4600 U
2,4-DIMETHYLPHENOL	6200 U	7000 U	5200 U	4600 U
BIS(2-CHLOROETHOXY)METHANE	6200 U	7000 U	5200 U	4600 U
2,4-DICHLOROPHENOL	6200 U	7000 U	5200 U	4600 U
1,2,4-TRICHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
NAPHTHALENE	6200 U	7000 U	5200 U	4600 U
4-CHLOROANILINE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROBUTADIENE	6200 U	7000 U	5200 U	4600 U
4-CHLORO-3-METHYLPHENOL	6200 U	7000 U	5200 U	4600 U
2-METHYLNAPHTHALENE	6200 U	7000 U	5200 U	4600 U
HEXACHLOROCYCLOPENTADIENE	6200 U	7000 U	5200 U	4600 U
2,4,6-TRICHLOROPHENOL	6200 U	7000 U	5200 U	4600 U
2,4,5-TRICHLOROPHENOL	15000 U	17000 U	12000 U	11000 U
2-CHLORONAPHTHALENE	6200 U	7000 U	5200 U	4600 U
2-NITROANILINE	15000 U	17000 U	12000 U	11000 U
DIMETHYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
ACENAPHTHYLENE	6200 U	7000 U	5200 U	4600 U
2.6-DINITROTOLUENE	6200 U	7000 U	5200 U	4600 U
3-NITROANILINE	15000 U	17000 U	12000 U	11000 U
ACENAPHTHENE	6200 U	7000 U	5200 U	4600 U
2,4-DINITROPHENOL	15000 U	17000 U	12000 U	11000 U
4-NITROPHENOL	15000 U	17000 U	12000 U	11000 U

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6"	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
SEMIVOLATILES (ug/kg) cont.				
DIBENZOFURAN	6200 U	7000 U	5200 U	4600 U
2,4-DINITROTOLUENE	6200 U	7000 U	5200 U	4600 U
DIETHYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
4-CHLOROPHENYLPHENYL ETHER	6200 U	7000 U	5200 U	4600 U
FLUORENE	6200 U	7000 U	5200 U	4600 U
4-NITROANILINE	15000 U	17000 U	12000 U	11000 U
4,6-DINITRO-2-METHYLPHENOL	15000 U	17000 U	12000 U	11000 U
N-NITROSODIPHENYLAMINE	6200 U	7000 U	5200 U	4600 U
4-BROMOPHENYL PHENYL ETHER	6200 U	7000 U	5200 U	4600 U
HEXACHLOROBENZENE	6200 U	7000 U	5200 U	4600 U
PENTACHLOROPHENOL	15000 U	17000 U	12000 U	11000 U
PHENANTHRENE	6200 U	7000 U	5200 U	4600 U
ANTHRACENE	6200 U	7000 U	5200 U	4600 U
CARBAZOLE	6200 UJ	7000 UJ	5200 UJ	4600 UJ
DI-N-BUTYL PHTHALATE	1400 J	1600 J	1200 J	940 J
FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
PYRENE	6200 U	7000 U	5200 U	4600 U
BUTYL BENZYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
3,3'-DICHLOROBENZIDINE	6200 U	7000 U	5200 U	4600 U
BENZO(A)ANTHRACENE	6200 U	7000 U	5200 U	4600 U
CHRYSENE	6200 U	7000 U	5200 U	4600 U
BIS(2-ETHYLHEXYL)PHTHALATE	6200 U	7000 U	5200 U	4600 U
DI-N-OCTYL PHTHALATE	6200 U	7000 U	5200 U	4600 U
BENZO(B)FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
BENZO(K)FLUORANTHENE	6200 U	7000 U	5200 U	4600 U
BENZO(A)PYRENE	6200 U	7000 U	5200 U	4600 U
INDENO(1,2,3-CD)PYRENE	6200 U	7000 U	5200 U	4600 U
DIBENZO(A,H)ANTHRACENE	6200 U	7000 U	5200 U	4600 U
BENZO(G,H,I)PERYLENE	6200 U	7000 U	5200 U	4600 U

LOCATION DATE COLLECTED DEPTH		MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg)						
PHENOL	4600 U	7000 U	ND	ND		0/4
BIS(2-CHLOROETHYL)ETHER	4600 U	7000 U	ND	ND		0/4
2-CHLOROPHENOL	4600 U	7000 U	ND	ND		0/4
1,3-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
1,4-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
1,2-DICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
2-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
2,2'-OXYBIS(1-CHLOROPROPANE)	4600 U	7000 U	ND	ND		0/4
4-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
N-NITROSO-DI-N-PROPYLAMINE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROETHANE	4600 U	7000 U	ND	ND		0/4
NITROBENZENE	4600 U	7000 U	ND	ND		0/4
ISOPHORONE	4600 U	7000 U	ND	ND		0/4
2-NITROPHENOL	4600 U	7000 U	ND	ND		0/4
2,4-DIMETHYLPHENOL	4600 U	7000 U	ND	ND		0/4
BIS(2-CHLOROETHOXY)METHANE	4600 U	7000 U	ND	ND		0/4
2,4-DICHLOROPHENOL	4600 U	7000 U	ND	ND		0/4
1,2,4-TRICHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
NAPHTHALENE	4600 U	7000 U	ND	ND		0/4
4-CHLOROANILINE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROBUTADIENE	4600 U	7000 U	ND	ND		0/4
4-CHLORO-3-METHYLPHENOL	4600 U	7000 U	ND	ND		0/4
2-METHYLNAPHTHALENE	4600 U	7000 U	ND	ND		0/4
HEXACHLOROCYCLOPENTADIENE	4600 U	7000 U	ND	ND		0/4
2,4,6-TRICHLOROPHENOL	4600 U	7000 U	ND	ND		0/4
2,4,5-TRICHLOROPHENOL	11000 U	17000 U	ND	ND		0/4
2-CHLORONAPHTHALENE	4600 U	7000 U	ND	ND		0/4
2-NITROANILINE	11000 U	17000 U	ND	ND		0/4
DIMETHYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
ACENAPHTHYLENE	4600 U	7000 U	ND	ND		0/4
2,6-DINITROTOLUENE	4600 U	7000 U	ND	ND		0/4
3-NITROANILINE	11000 U	17000 U	ND	ND		0/4
ACENAPHTHENE	4600 U	7000 U	ND	ND		0/4
2,4-DINITROPHENOL	11000 U	17000 U	ND	ND		0/4
4-NITROPHENOL	11000 U	17000 U	ND	ND		0/4

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/kg) cont.						
DIBENZOFURAN	4600 U	7000 U	ND	ND		0/4
2,4-DINITROTOLUENE	4600 U	7000 U	ND	ND		0/4
DIETHYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
4-CHLOROPHENYLPHENYL ETHER	4600 U	7000 U	ND	ND		0/4
FLUORENE	4600 U	7000 U	ND	ND		0/4
4-NITROANILINE	11000 U	17000 U	ND	ND		0/4
4,6-DINITRO-2-METHYLPHENOL	11000 U	17000 U	ND	ND		0/4
N-NITROSODIPHENYLAMINE	4600 U	7000 U	ND	ND		0/4
4-BROMOPHENYL PHENYL ETHER	4600 U	7000 U	ND	ND		0/4
HEXACHLOROBENZENE	4600 U	7000 U	ND	ND		0/4
PENTACHLOROPHENOL	11000 U	17000 U	ND	ND		0/4
PHENANTHRENE	4600 U	7000 U	ND	ND		0/4
ANTHRACENE	4600 U	7000 U	ND	ND		0/4
CARBAZOLE	4600 UJ	7000 UJ	ND	ND		0/4
DI-N-BUTYL PHTHALATE	NA	NA	940 J	1600 J	65-SD04-612	4/4
FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
PYRENE	4600 U	7000 U	ND	ND		0/4
BUTYL BENZYL PHTHALATE	4600 U	7000 U	ND	NĎ		0/4
3,3'-DICHLOROBENZIDINE	4600 U	7000 U	ND	ND		0/4
BENZO(A)ANTHRACENE	4600 U	7000 U	ND	ND		0/4
CHRYSENE	4600 U	7000 U	ND	ND		0/4
BIS(2-ETHYLHEXYL)PHTHALATE	4600 U	7000 U	ND	ND		0/4
DI-N-OCTYL PHTHALATE	4600 U	7000 U	ND	ND		0/4
BENZO(B)FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
BENZO(K)FLUORANTHENE	4600 U	7000 U	ND	ND		0/4
BENZO(A)PYRENE	4600 U	7000 U	ND	ND		0/4
INDENO(1,2,3-CD)PYRENE	4600 U	7000 U	ND	ND		0/4
DIBENZO(A,H)ANTHRACENE	-4600 U	7000 U	ND	ND		0/4
BENZO(G,H,I)PERYLENE	4600 U	7000 U	ND	ND		0/4

LOCATION DATE COLLECTED DEPTH	65-SD04-06 05/16/95 0-6''	65-SD04-612 05/16/95 6-12"	65-SD05-06 05/17/95 0-6"	65-SD05-612 05/17/95 6-12"
PESTICIDE/PCBS (ug/kg)				
ALPHA-BHC	6.5 U	7.2 U	5.4 U	4,8 U
BETA-BHC	6.5 U	8.3 NJ	5.4 U	4.8 U
DELTA-BHC	6.5 U	7.2 U	5.4 U	4.8 U
GAMMA-BHC(LINDANE)	6.5 U	7.2 U	5.4 U	4.8 U
HEPTACHLOR	6,5 U	7.2 U	5.4 U	4.8 U
ALDRIN	6,5 U	7.2 U	5.4 U	4.8 U
HEPTACHLOR EPOXIDE	6.5 U	7.2 U	5.4 U	4.8 U
ENDOSULFAN I	6.5 U	7.2 U	5.4 U	4.8 U
DIELDRIN	13 U	14 U	10 U	9.4 U
4,4'-DDE	18 J	14 U	19 NJ	9,4 U
ENDRIN	13 U	14 U	10 U	9.4 U
ENDOSULFAN II	13 U	14 U	10 U	9.4 U
4,4'-DDD	76 J	14 UJ	84 J	9.4 UJ
ENDOSULFAN SULFATE	13 U	14 U	10 U	9.4 U
4,4'-DDT	13 U	14 U	10 U	9.4 U
METHOXYCHLOR	65 U	72 U	54 U	48 U
ENDRIN KETONE	13 U	14 U	10 U	9.4 U
ENDRIN ALDEHYDE	13 U	14 U	10 U	9.4 U
ALPHA CHLORDANE	6.5 U	7.2 U	5.4 U	4.8 U
GAMMA CHLORDANE	6.5 U	7.2 U	5.4 U	4.8 U
TOXAPHENE	650 U	720 U	540 U	480 U
PCB-1016	130 U	140 U	100 U	94 U
PCB-1221	260 U	280 U	210 U	190 U
PCB-1232	130 U	140 U	100 U	94 U
PCB-1242	130 U	140 U	100 U	94 U
PCB-1248	130 U	140 U	100 U	94 U
PCB-1254	130 U	140 U	100 U	94 U
PCB-1260	130 U	140 U	100 U	94 U

LOCATION DATE COLLECTED DEPTH	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	4.8 U	7.2 U	ND	ND		0/4
BETA-BHC	4.8 U	6.5 U	8.3 NJ	8.3 NJ	65-SD04-612	1/4
DELTA-BHC	4.8 U	7.2 U	ND	ND		0/4
GAMMA-BHC(LINDANE)	4.8 U	7.2 U	ND	ND		0/4
HEPTACHLOR	4.8 U	7.2 U	ND	ND		0/4
ALDRIN	4.8 U	7.2 U	ND	ND		0/4
HEPTACHLOR EPOXIDE	4.8 U	7.2 U	ND	ND		0/4
ENDOSULFAN I	4.8 U	7.2 U	ND	ND		0/4
DIELDRIN	9.4 U	14 U	ND	ND		0/4
4,4'-DDE	9.4 U	14 U	18 J	19 NJ	65-SD05-06	2/4
ENDRIN	9.4 U	14 U	ND	ND		0/4
ENDOSULFAN II	9.4 U	14 U	ND	ND		0/4
4,4'-DDD	9.4 UJ	14 UJ	76 J	84 J	65-SD05-06	· 2/4
ENDOSULFAN SULFATE	9.4 U	14 U	ND	ND		0/4
4,4'-DDT	9.4 U	14 U	ND	ND		0/4
METHOXYCHLOR	48 U	72 U	ND	ND		0/4
ENDRIN KETONE	9.4 U	14 U	ND	ND		0/4
ENDRIN ALDEHYDE	9.4 U	14 U	ND	ND		0/4
ALPHA CHLORDANE	4.8 U	7.2 U	ND	ND		0/4
GAMMA CHLORDANE	4.8 U	7.2 U	ND	ND		0/4
TOXAPHENE	480 U	720 U	ND	ND		0/4
PCB-1016	94 U	140 U	ND	ND		0/4
PCB-1221	190 U	280 U	ND	ND		0/4
PCB-1232	94 U	140 U	ND	ND		0/4
PCB-1242	94 U	140 U	ND	ND		0/4
PCB-1248	94 U	140 U	ND	ND		0/4
PCB-1254	94 U	140 U	ND	ND		0/4
PCB-1260	94 U	140 U	ND	ND		0/4

APPENDIX 0.10 SEDIMENT METALS

LOCATION	65-SD04-06	65-SD04-612	65-SD05-06	65-SD05-612
DATE COLLECTED	05/16/95	05/16/95	05/17/95	05/17/95
DEPTH	0-6"	6-12"	0-6"	6-12"
ANALYTES (mg/kg)				
ALUMINUM	37000 J	10900 J	3090	394
ANTIMONY	46.6 J	44.1 UJ	32.5 U	28.5 U
ARSENIC	7.5 U	8.8 U	6.5 U	5.7 U
BARIUM	110	94.2	86.1	13.6
BERYLLIUM	0.75 U	0.88 U	0.65 U	0.57 U
CADMIUM	3.8 U	4.4 U	3.2 U	2.8 U
CALCIUM	4470	2470	4640	322
CHROMIUM	43.6 J	9.8 J	6.5 U	5.7 U
COBALT	36.3	17.6 U	13 U	11.4 U
COPPER	100 J	21.4 J	8.2	5.7 U
IRON	14600 J	3250 J	985	414
LEAD	176 J	38.5 J	23.9	1.7 U
MAGNESIUM	1140	674	470 U	94.8
MANGANESE	126 J	37.4 J	38.7	25.6
MERCURY	0.38 U	0.44 U	0.32 U	0.28 U
NICKEL	15.1 U	17.6 U	13 U	11.4 U
POTASSIUM	1410	881 U	649 U	570 U
SELENIUM	3.8 U	4.4 U	3.2 U	2.8 U
SILVER	3.8 U	4.4 U	3.2 U	2.8 U
SODIUM	203	177	139	114 U
THALLIUM	7.5 U	8.8 U	6.5 U	5.7 U
VANADIUM	40.5	8.8 U	6.5 U	5.7 U
ZINC	280 J	56.3 J	36.5	7.9

	MINIMUM	MAXIMUM	6 41 N 11 N 41 18 4		LOCATION OF	FREQUENCY
DATE COLLECTED			MINIMUM	MAXIMUM	MAXIMUM	OF
DEPTH	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
ANALYTES (mg/kg)						
ALUMINUM	NA	NA	394	37000 J	65-SD04-06	4/4
ANTIMONY	28.5 U	44.1 UJ	46.6 J	46.6 J	65-SD04-06	1/4
ARSENIC	5.7 U	8.8 U	ND	ND		0/4
BARIUM	NA	NA	13.6	110	65-SD04-06	4/4
BERYLLIUM	0.57 U	0.88 U	ND	ND		0/4
CADMIUM	2.8 U	4.4 U	ND	ND		0/4
CALCIUM	NA	NA	322	4640	65-SD05-06	4/4
CHROMIUM	5.7 U	6.5 U	9.8 J	43.6 J	65-SD04-06	2/4
COBALT	11.4 U	17.6 U	36.3	36.3	65-SD04-06	1/4
COPPER	5.7 U	5.7 U	8.2	100 J	65-SD04-06	3/4
IRON	NA	NA	414	14600 J	65-SD04-06	4/4
LEAD	1.7 U	1.7 U	23.9	176 J	65-SD04-06	3/4
MAGNESIUM	470 U	470 U	94.8	1140	65-SD04-06	3/4
MANGANESE	NA	NA	25.6	126 J	65-SD04-06	4/4
MERCURY	0.28 U	0.44 U	ND	ND		0/4
NICKEL	11.4 U	17.6 U	ND	ND		0/4
POTASSIUM	570 U	881 U	1410	1410	65-SD04-06	1/4
SELENIUM	2.8 U	4.4 U	ND	ND		0/4
SILVER	2.8 U	4.4 U	ND	ND		0/4
SODIUM	114 U	114 U	139	203	65-SD04-06	3/4
THALLIUM	5.7 U	8.8 U	ND	ND		0/4
VANADIUM	5.7 U	8.8 U	40.5	40.5	65-SD04-06	1/4
ZINC	NA	NA	7.9	280 J	65-SD04-06	4/4

APPENDIX 0.11 FISH FILLET

SAMPLE ID. DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
VOLATILES (ug/kg) CHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
BROMOMETHANE	4800 U	4800 U	4800 U	4800 U
VINYL CHLORIDE	4800 U	4800 U	4800 U	4800 U
CHLOROETHANE	4800 U	4800 U	4800 U	4800 U
METHYLENE CHLORIDE	4800 U	4800 U	4800 U	4800 U
ACETONE	4800 U	5600 J	7900 J	7500 UJ
CARBON DISULFIDE	4800 U	4800 U	4800 U	4800 U
1,1-DICHLOROETHENE	4800 U	4800 U	4800 U	4800 U
1,1-DICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U	4800 U	4800 U
CHLOROFORM	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
2-BUTANONE (MEK)	4800 U	4800 U	4800 U	4800 U
1,1,1-TRICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
CARBON TETRACHLORIDE	4800 U	4800 U	4800 U	4800 U
BROMODICHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
1,2-DICHLOROPROPANE	4800 U	4800 U	4800 U	4800 U
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U	4800 U	4800 U
TRICHLOROETHENE	4800 U	4800 U	4800 U	4800 U
DIBROMOCHLOROMETHANE	4800 U	4800 U	4800 U	4800 U
1,1,2-TRICHLOROETHANE	4800 U	4800 U	4800 U	4800 U
BENZENE	4800 U	4800 U	4800 U	4800 U
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	4800 U	4800 U
BROMOFORM	4800 U	4800 U	4800 U	4800 U
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	4800 U	4800 U
2-HEXANONE	4800 U	4800 U	4800 U	4800 U
TETRACHLOROETHENE	4800 U	4800 U	4800 U	4800 U
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	4800 U	4800 U
TOLUENE	4800 U	4800 U	4800 U	4800 U
CHLOROBENZENE	4800 U	4800 U	4800 U	4800 U
ETHYLBENZENE	4800 U	4800 U	4800 U	4800 U
STYRENE	4800 U	4800 U	4800 U	4800 U
XYLENES (TOTAL)	4800 U	4800 U	4800 U	4800 U

OON TION OF

EDEAL/ENAX

SAMPLE ID.			MINIMUM DETECTED		LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED	NONDETECTED	NONDETECTED	DETLOTED	DETECTED	DETECTED	DETECTION
VOLATILES (ug/kg)	. •					
CHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
BROMOMETHANE	4800 U	4800 U	ND	ND		0/4
VINYL CHLORIDE	4800 U	4800 U	ND	ND		0/4
CHLOROETHANE	4800 U	4800 U	ND	ND		0/4
METHYLENE CHLORIDE	4800 U	4800 U	ND	ND		0/4
ACETONE	4800 U	7500 UJ	5600 J	7900 J	65-FS05-LB01F	2/4
	4800 U	4800 U	ND	ND		0/4
1,1-DICHLOROETHENE	4800 U	4800 U	ND	ND		0/4
	4800 U 4800 U	4800 U 4800 U	ND	ND		0/4
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U 4800 U	ND ND	ND		0/4
	4800 U	4800 U 4800 U	ND	ND ND		0/4 0/4
1,2-DICHLOROETHANE 2-BUTANONE (MEK)	4800 U	4800 U	ND	ND		0/4
1,1,1-TRICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
CARBON TETRACHLORIDE	4800 U	4800 U	ND	ND		0/4
BROMODICHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
1,2-DICHLOROPROPANE	4800 U	4800 U	ND	ND		0/4
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U	ND	ND		0/4
TRICHLOROETHENE	4800 U	4800 U	ND	ND		0/4
DIBROMOCHLOROMETHANE	4800 U	4800 U	ND	ND		0/4
1,1,2-TRICHLOROETHANE	4800 U	4800 U	ND	ND		0/4
BENZENE	4800 U	4800 U	ND	ND		0/4
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	ND	ND		0/4
BROMOFORM	4800 U	4800 U	ND	ND		0/4
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	ND	ND		0/4
2-HEXANONE	4800 U	4800 U	ND	ND		0/4
TETRACHLOROETHENE	4800 U	4800 U	ND	ND		0/4
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	ND	ND		0/4
TOLUENE	4800 U	4800 U	ND	ND		0/4
CHLOROBENZENE	4800 U	4800 U	ND	ND		0/4
ETHYLBENZENE	4800 U	4800 U	ND	ND		0/4
STYRENE	4800 U	4800 U	ND	ND		0/4
XYLENES (TOTAL)	4800 U	4800 U	ND	ND		0/4

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
SEMIVOLATILES (UG/KG)				
PHENOL	1000 U	1000 U	1000 U	1000 U
2-CHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
1,3-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
1,4-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
1,2-DICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
2-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2,2'-OXYBIS(1-CHLOROPROPANE)	1000 U	1000 U	1000 U	1000 U
4-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
N-NITROSO-DI-N-PROPYLAMINE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROETHANE	1000 U	1000 U	1000 U	1000 U
NITROBENZENE	1000 U	1000 U	1000 U	1000 U
ISOPHORONE	1000 U	1000 U	1000 U	1000 U
2-NITROPHENOL	1000 U	1000 U	1000 U	1000 U
2,4-DIMETHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2,4-DICHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
1,2,4-TRICHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
NAPHTHALENE	1000 U	1000 U	1000 U	1000 U
4-CHLOROANILINE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROBUTADIENE	1000 U	1000 U	1000 U	1000 U
4-CHLORO-3-METHYLPHENOL	1000 U	1000 U	1000 U	1000 U
2-METHYLNAPHTHALENE	1000 U	1000 U	1000 U	1000 U
HEXACHLOROCYCLOPENTADIENE	1000 U	1000 U	1000 U	1000 U
2,4,6-TRICHLOROPHENOL	1000 U	1000 U	1000 U	1000 U
2,4,5-TRICHLOROPHENOL	2500 U	2500 U	2500 U	2500 U
2-CHLORONAPHTHALENE	1000 U	1000 U	1000 U	1000 U
2-NITROANILINE	2500 U	2500 U	2500 U	2500 U
DIMETHYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
ACENAPHTHYLENE	1000 U	1000 U	1000 U	1000 U
2,6-DINITROTOLUENE	1000 U	1000 U	1000 U	1000 U
3-NITROANILINE	2500 U	2500 UJ	2500 U	2500 UJ
ACENAPHTHENE	1000 U	1000 U	1000 U	1000 U
2,4-DINITROPHENOL	2500 U	2500 U	2500 U	2500 U
4-NITROPHENOL	2500 U	2500 U	2500 U	2500 U

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
SEMIVOLATILES (UG/KG) cont. DIBENZOFURAN	1000 U	1000 U	1000 U	1000 U
2.4-DINITROTOLUENE	1000 U	1000 U	1000 U	1000 U
DIETHYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
FLUORENE	1000 U	1000 U	1000 U	1000 U
4-NITROANILINE	2500 U	2500 U	2500 U	2500 U
4.6-DINITRO-2-METHYLPHENOL	2500 U	2500 U	2500 U	2500 U
N-NITROSODIPHENYLAMINE	1000 U	1000 U	1000 U	1000 U
4-BROMOPHENYL PHENYL ETHER	1000 U	1000 U	1000 U	1000 U
HEXACHLOROBENZENE	1000 U	1000 U	1000 U	1000 U
PENTACHLOROPHENOL	2500 U	2500 U	2500 U	2500 U
PHENANTHRENE	1000 U	1000 U	1000 U	1000 U
ANTHRACENE	1000 U	1000 U	1000 U	1000 U
CARBAZOLE	1000 U	1000 U	1000 U	1000 U
DI-N-BUTYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
PYRENE	1000 U	1000 U	1000 U	1000 U
BUTYL BENZYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
3,3'-DICHLOROBENZIDINE	1000 U	1000 U	1000 U	1000 U
BENZO(A)ANTHRACENE	1000 U	1000 U	1000 U	1000 U
CHRYSENE	1000 U	1000 U	1000 U	1000 U
BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	1000 U	1000 U	1000 U
DI-N-OCTYL PHTHALATE	1000 U	1000 U	1000 U	1000 U
BENZO(B)FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
BENZO(K)FLUORANTHENE	1000 U	1000 U	1000 U	1000 U
BENZO(A)PYRENE	1000 U	1000 U	1000 U	1000 U
INDENO(1,2,3-CD)PYRENE	1000 U	1000 U	1000 U	1000 U
DIBENZO(A,H)ANTHRACENE	1000 U	1000 U	1000 U	1000 U
BENZO(G,H,I)PERYLENE	1000 U	1000 U	1000 U	1000 U
BIS(2-CHLOROETHOXY)-METHANE	1000 U	1000 U	1000 U	1000 U
BIS(2-CHLOROETHYL) ETHER	1000 U	1000 U	1000 U	1000 U
4-CHLOROPHENYL PHENYL ETHER	1000 U	1000 U	1000 U	1000 U

SAMPLE ID DATE COLLECTED		MAXIMUM NONDETECTED		MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (UG/KG)						
PHENOL	1000 U	1000 U	ND	ND		0/4
2-CHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
1,3-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
1,4-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
1,2-DICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
2-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2,2'-OXYBIS(1-CHLOROPROPANE)	1000 U	1000 U	ND	ND		0/4
4-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
N-NITROSO-DI-N-PROPYLAMINE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROETHANE	1000 U	1000 U	ND	ND		0/4
NITROBENZENE	1000 U	1000 U	ND	ND		0/4
ISOPHORONE	1000 U	1000 U	ND	ND		0/4
2-NITROPHENOL	1000 U	1000 U	ND	ND		0/4
2,4-DIMETHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2,4-DICHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
1,2,4-TRICHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
NAPHTHALENE	1000 U	1000 U	ND	ND		0/4
4-CHLOROANILINE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROBUTADIENE	1000 U	1000 U	ND	ND		0/4
4-CHLORO-3-METHYLPHENOL	1000 U	1000 U	ND	ND		0/4
2-METHYLNAPHTHALENE	1000 U	1000 U	ND	ND		0/4
HEXACHLOROCYCLOPENTADIENE	1000 U	1000 U	ND	ND		0/4
2,4,6-TRICHLOROPHENOL	1000 U	1000 U	ND	ND		0/4
2,4,5-TRICHLOROPHENOL	2500 U	2500 U	ND	ND		0/4
2-CHLORONAPHTHALENE	1000 U	1000 U	ND	ND		0/4
2-NITROANILINE	2500 U	2500 U	ND	ND		0/4
DIMETHYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
ACENAPHTHYLENE	1000 U	1000 U	ND	ND		0/4
2,6-DINITROTOLUENE	1000 U	1000 U	ND	ND		0/4
3-NITROANILINE	2500 U	2500 U	ND	ND		0/4
ACENAPHTHENE	1000 U	1000 U	ND	ND		0/4
2,4-DINITROPHENOL	2500 U	2500 U	ND	ND		0/4
4-NITROPHENOL	2500 U	2500 U	ND	ND		0/4

		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
	SAMPLE ID	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
	DATE COLLECTED						
		$\phi = T$					
	SEMIVOLATILES (UG/KG) cont.	4000 11	4000 11				
	DIBENZOFURAN	1000 U	1000 U	ND	ND		0/4
	2,4-DINITROTOLUENE	1000 U	1000 U	ND	ND		0/4
	DIETHYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
	FLUORENE	1000 U	1000 U	ND	ND		0/4
	4-NITROANILINE	2500 U	2500 U	ND	ND		0/4
	4,6-DINITRO-2-METHYLPHENOL	2500 U	2500 U	ND	ND		0/4
	N-NITROSODIPHENYLAMINE	1000 U	1000 U	ND	ND		0/4
	4-BROMOPHENYL PHENYL ETHER	1000 U	1000 U	ND	ND		0/4
	HEXACHLOROBENZENE	1000 U	1000 U	ND	ND		0/4
	PENTACHLOROPHENOL	2500 U	2500 U	ND	ND		0/4
	PHENANTHRENE	1000 U	1000 U	ND	ND		0/4
	ANTHRACENE	1000 U	1000 U	ND	ND		0/4
	CARBAZOLE	1000 U	1000 U	ND	ND		0/4
•	DI-N-BUTYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
	FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
	PYRENE	1000 U	1000 U	ND	ND		0/4
	BUTYL BENZYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
	3,3'-DICHLOROBENZIDINE	1000 U	1000 U	ND	ND		0/4
	BENZO(A)ANTHRACENE	1000 U	1000 U	ND	ND		0/4
	CHRYSENE	1000 U	1000 U	ND	ND		0/4
	BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	1000 U	ND	ND		0/4
	DI-N-OCTYL PHTHALATE	1000 U	1000 U	ND	ND		0/4
	BENZO(B)FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
	BENZO(K)FLUORANTHENE	1000 U	1000 U	ND	ND		0/4
	BENZO(A)PYRENE	1000 U	1000 U	ND	ND		0/4
	INDENO(1,2,3-CD)PYRENE	1000 U	1000 U	ND	ND		0/4
	DIBENZO(A,H)ANTHRACENE	1000 U	1000 U	ND	ND		0/4
	BENZO(G,H,I)PERYLENE	1000 U	1000 U	ND	ND		0/4
	BIS(2-CHLOROETHOXY)-METHANE	1000 U	1000 U	ND	ND		0/4
	BIS(2-CHLOROETHYL) ETHER	1000 U	1000 U	ND	ND		0/4
	4-CHLOROPHENYL PHENYL ETHER	1000 U	1000 U	ND	ND		0/4
		1000 0	1000 0		110		T iv

.

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
PESTICIDE/PCBS (ug/kg)				
ALPHA-BHC	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
BETA-BHC	5 UJ	5.1 U	5.1 U	5.1 U
DELTA-BHC	5 UJ	5.1 U	5.1 U	5.1 U
GAMMA-BHC(LINDANE)	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
ALDRIN	5 UJ	5.1 U	5.1 U	5.1 U
HEPTACHLOR EPOXIDE	5 UJ	5.1 U	5.1 U	5.1 U
ENDOSULFAN I	5 UJ	5.1 UJ	5.1 UJ	5.1 UJ
DIELDRIN	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
4,4'-DDE	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
ENDRIN	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN II	9.8 UJ	9.9 U	9.9 U	9.9 U
4,4'-DDD	5.7 J	9.9 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN SULFATE	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
4,4'-DDT	9.8 UJ	9.9 UJ	9.9 UJ	9.9 UJ
METHOXYCHLOR	50 UJ	51 UJ	51 UJ	51 UJ
ENDRIN KETONE	9.8 UJ	9.9 U	9.9 U	9.9 U
ENDRIN ALDEHYDE	9.8 UJ	9.9 U	9.9 U	9.9 U
ALPHA CHLORDANE	5 UJ	5.1 U	5.1 U	5.1 U
GAMMA CHLORDANE	5 UJ	5.1 U	5.1 U	5.1 U
TOXAPHENE	500 UJ	510 U	510 U	510 U
AROCLOR 1016	98 UJ	99 U	99 U	99 U
AROCLOR 1221	200 UJ	200 U	200 U	200 U
AROCLOR 1232	98 UJ	99 U	99 U	99 U
AROCLOR 1242	98 UJ	99 U	99 U	99 U
AROCLOR 1248	98 UJ	99 U	99 U	99 U
AROCLOR 1254	98 UJ	99 U	99 U	99 U
AROCLOR 1260	98 UJ	99 U	99 U	99 U

ŧ

SAMPLE ID DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg) ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR	5 UJ 5 UJ 5 UJ 5 UJ 5 UJ	5.1 UJ 5.1 U 5.1 U 5.1 UJ 5.1 UJ	ND ND ND ND	ND ND ND ND		0/4 0/4 0/4 0/4 0/4
ALDRIN	5 UJ	5.1 U	ND	ND		0/4
HEPTACHLOR EPOXIDE	5 UJ	5.1 U	ND	ND		0/4
ENDOSULFAN I	5 UJ	5.1 U	ND	ND		0/4
DIELDRIN	9.8 UJ	9.9 UJ	ND	ND		0/4
4,4-DDE	9.8 UJ	9.9 UJ	ND	ND		0/4
ENDRIN	9.8 UJ	9.9 UJ	ND	ND		0/4
ENDOSULFAN II	9.8 UJ	9.9 U	ND	ND	65-FS04-BG01F	0/4
4,4-DDD	9.9 UJ	9.9 UJ	5.7 J	5.7 J		1/4
ENDOSULFAN SULFATE	9.8 UJ	9.9 UJ	ND	ND		0/4
4,4-DDT	9.8 UJ	9.9 UJ	ND	ND		0/4
METHOXYCHLOR	50 UJ	51 UJ	ND	ND		0/4
ENDRIN KETONE	9.8 UJ	9.9 U	ND	ND		0/4
ENDRIN ALDEHYDE	9.8 UJ	9.9 U	ND	ND		0/4
ALPHA CHLORDANE	5 UJ	5.1 U	ND	ND		0/4
GAMMA CHLORDANE	5 UJ	5.1 U	ND	ND		0/4
TOXAPHENE	500 UJ	510 U	ND	ND		0/4
AROCLOR 1016	98 UJ	99 U	ND	ND		0/4
AROCLOR 1221 AROCLOR 1232 AROCLOR 1242 AROCLOR 1248 AROCLOR 1254 AROCLOR 1260	200 UJ 98 UJ 98 UJ 98 UJ 98 UJ 98 UJ 98 UJ	200 UJ 99 U 99 U 99 U 99 U 99 U 99 U	ND ND ND ND ND ND	ND ND ND ND ND ND		0/4 0/4 0/4 0/4 0/4 0/4

SAMPLE ID DATE COLLECTED	65-FS04-BG01F 05/17/95	65-FS05-BG01F 05/16/95	65-FS05-LB01F 05/16/95	65-FS05-RS01F 05/16/95
ANALYTES (mg/kg)				
ALUMINUM	3.5 U	1.7 U	0.99	1 U
ANTIMONY	1 U	1 U	1 U	1 U
ARSENIC	0.08 UJ	0.08 UJ	0.08 UJ	0.08 UJ
BARIUM	0.21 J	0.1 U	0.052 U	0.051 U
BERYLLIUM	0.015 U	0.015 U	0.015 U	0.015 U
BORON	0.7 U	0.71 U	0.71 U	0.7 U
CADMIUM	0.1 U	0.1 U	0.1 U	0.1 U
CALCIUM	2100 J	560 J	399 J	385 J
CHROMIUM	0.31 U	0.22 U	0.15 U	0.3 U
COBALT	0.32 U	0.32 U	0.32 U	0.32 U
COPPER	0.49	0.46	0.23 U	0.51 U
CYANIDE, TOTAL	0.5 U	0.5 U	0.5 U	0.5 U
IRON	3.3 U	2.7 U	1.5 U	2.4 U
LEAD	0.054 U	0.055 U	0.054 U	0.054 U
MAGNESIUM	298 J	299 J	290 J	293 J
MANGANESE	0.45 J	0.22 J	0.092 J	0.14 J
MERCURY	0.22 J	0.07 J	0.3 J	0.051 J
MOLYBDENUM	0.12 U	0.12 U	0.12 U	0.12 U
NICKEL	0.86 U	0.87 U	0.87 U	0.86 U
POTASSIUM	2700 J	3220 J	3540 J	3520 J
SELENIUM	0.22	0.15	0.16	0.14
SILVER	0.094 U	0.094 U	0.094 U	0.094 U
SODIUM	869	708	441	620
THALLIUM	0.11	0.11 U	0.11	0.11
TIN	9.6 U	9.6 U	9.6 U	9.6 U
VANADIUM	0.12 U	0.12 U	0.12 U	0.12 U
ZINC	8.1 J	8.4 J	5.8 J	8.2 J

ζ.

MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
				65-FS05-LB01F	1/4
					0/4
					0/4
				65-FS04-BG01F	1/4
					0/4
					0/4
					0/4
				65-FS04-BG01F	4/4
					0/4
					0/4
				65-FS04-BG01F	2/4
					0/4
					0/4
					0/4
	NA	290 J	299 J	65-FS05-BG01F	4/4
			0.45 J	65-FS04-BG01F	4/4
			0.3 J	65-FS05-LB01F	4/4
			ND		0/4
	0.87 U	ND	ND		0/4
NA	NA	2700 J	3540 J	65-FS05-LB01F	4/4
NA	NA	0.14	0.22	65-FS04-BG01F	4/4
0.094 U	0.094 U	ND	ND		0/4
NA	NA	441	869	65-FS04-BG01F	4/4
0,11 U	0.11 U	0.11	0.11	65-FS05-RS01F	3/4
9.6 U	9.6 U	ND	ND		0/4
0.12 U	0.12 U	ND	ND		0/4
NA	NA	5.8 J	8.4 J	65-FS05-BG01F	4/4
	1 U 1 U 1 U 0.08 UJ 0.051 U 0.015 U 0.7 U 0.1 U NA 0.15 U 0.32 U 0.23 U 0.23 U 0.23 U 0.23 U 0.5 U 1.5 U 0.054 U NA NA NA NA NA NA NA NA NA NA	NONDETECTED NONDETECTED 1 U 3.5 U 1 U 1 U 0.08 UJ 0.08 UJ 0.051 U 0.1 U 0.051 U 0.1 U 0.015 U 0.015 U 0.7 U 0.71 U 0.1 U 0.1 U 0.23 U 0.31 U 0.32 U 0.32 U 0.23 U 0.51 U 0.5 U 0.5 U 1.5 U 3.3 U 0.054 U 0.055 U NA NA NA N	NONDETECTED NONDETECTED DETECTED 1 U 35 U 0.99 1 U 1 U ND 0.08 UJ 0.08 UJ ND 0.051 U 0.1 U 0.21 J 0.015 U 0.015 U ND 0.7 U 0.71 U ND 0.15 U 0.11 U ND 0.15 U 0.31 U ND 0.15 U 0.31 U ND 0.15 U 0.31 U ND 0.23 U 0.32 U ND 0.23 U 0.51 U 0.46 0.5 U 0.5 U ND 0.23 U 0.51 U ND 0.46 0.55 U ND 0.51 U 0.46 0.52 U NA NA 200 J NA NA 200 J NA NA 0.092 J NA NA 0.092 J NA NA 0.012 U NA NA 2700 J NA NA	NONDETECTED NONDETECTED DETECTED DETECTED DETECTED 1 U 3.5 U 0.99 0.99 1 U 1 U ND ND 0.08 UJ 0.08 UJ ND ND 0.051 U 0.1 U 0.21 J 0.21 J 0.015 U 0.015 U ND ND 0.7 U 0.71 U ND ND 0.1 U 0.1 U ND ND 0.1 U 0.1 U ND ND 0.1 U 0.1 U ND ND 0.15 U 0.31 U ND ND 0.32 U 0.32 U ND ND 0.32 U 0.5U ND ND 0.5U 0.5U ND ND 0.5U 0.5U ND ND 0.5U 0.5U ND ND 0.5U 0.5U ND ND 0.46 0.49 0.5U 299 J NA NA 0.092 J 0.	MINIMUM NONDETECTED MAXIMUM DETECTED MAXIMUM DETECTED MAXIMUM DETECTED MAXIMUM DETECTED MAXIMUM DETECTED 1 U 3.5 U 0.99 0.99 65-F805-LB01F 1 U 1 U ND ND 0.08 UJ 0.08 UJ ND ND 0.051 U 0.1 U 0.21 J 0.21 J 65-F804-B601F 0.015 U 0.1 U 0.21 J 0.51 0 65-F804-B601F 0.015 U 0.71 ND ND ND 0 0 0.1 U 0.1 ND ND ND 0 0 0.1 U 0.1 ND ND ND 0 0 0.32 U 0.31 ND ND ND 0 0 0.32 U 0.51 U 0.46 0.49 65-F804-BG01F 0.50 ND </td

າ

APPENDIX 0.12 FISH WHOLE BODY

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
VOLATILES (ug/kg)					
CHLOROMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
BROMOMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
VINYL CHLORIDE	4800 U	4800 U	96000 U	48000 U	4800 U
CHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
METHYLENE CHLORIDE	4800 U	1000 J	96000 U	48000 U	4800 U
ACETONE	4800 U	4800 U	1400000 J	690000 J	27000
CARBON DISULFIDE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1-DICHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1-DICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROETHENE (TOTAL)	4800 U	4800 U	96000 U	48000 U	4800 U
CHLOROFORM	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
2-BUTANONE (MEK)	4800 U	4800 U	96000 U	48000 U	560 J
1,1,1-TRICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
CARBON TETRACHLORIDE	4800 U	4800 U	96000 U	48000 U	4800 U
BROMODICHLOROMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
1,2-DICHLOROPROPANE	4800 U	4800 U	96000 U	48000 U	4800 U
CIS-1,3-DICHLOROPROPENE	4800 U	4800 U	96000 U	48000 U	4800 U
TRICHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
DIBROMOCHLOROMETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1,2-TRICHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
BENZENE	4800 U	4800 U	96000 U	48000 U	4800 U
TRANS-1,3-DICHLOROPROPENE	4800 U	4800 U	96000 U	48000 U	4800 U
BROMOFORM	4800 U	4800 U	96000 U	48000 U	4800 U
4-METHYL-2-PENTANONE (MIBK)	4800 U	4800 U	96000 U	48000 U	4800 U
2-HEXANONE	4800 U	4800 U	96000 U	48000 U	4800 U
TETRACHLOROETHENE	4800 U	4800 U	96000 U	48000 U	4800 U
1,1,2,2-TETRACHLOROETHANE	4800 U	4800 U	96000 U	48000 U	4800 U
TOLUENE	4800 U	4800 U	96000 U	5000 J	4800 U
CHLOROBENZENE	4800 U	4800 U	96000 U	48000 U	4800 U
ETHYLBENZENE	4800 U	4800 U	96000 U	48000 U	4800 U
STYRENE	4800 U	4800 U	96000 U	48000 U	4800 U
XYLENES (TOTAL)	4800 U	4800 U	96000 U	48000 U	4800 U

SAMPLE ID. DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
DATE COLLECTED						
VOLATILES (ug/kg)						
CHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
BROMOMETHANE	4800 U	96000 U	ND	ND		0/5
VINYL CHLORIDE	4800 U	96000 U	ND	ND		0/5
CHLOROETHANE	4800 U	96000 U	ND	ND		0/5
METHYLENE CHLORIDE	4800 U	96000 U	1000 J	1000 J	65-FS04-RS01W	1/5
ACETONE	4800 U	4800 U	27000	1400000 J	65-FS05-BG01W	3/5
CARBON DISULFIDE	4800 U	96000 U	ND	ND		0/5
1,1-DICHLOROETHENE	4800 U	96000 U	ND	ND		0/5
1,1-DICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROETHENE (TOTAL)	4800 U	96000 U	ND	ND		0/5
CHLOROFORM	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
2-BUTANONE (MEK)	4800 U	96000 U	560 J	560 J	65-FS05-RS01W	1/5
1,1,1-TRICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
CARBON TETRACHLORIDE	4800 U	96000 U	ND	ND		0/5
BROMODICHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
1,2-DICHLOROPROPANE	4800 U	96000 U	ND	ND		0/5
CIS-1,3-DICHLOROPROPENE	4800 U	96000 U	ND	ND		0/5
TRICHLOROETHENE	4800 U	96000 U	ND	ND		0/5
DIBROMOCHLOROMETHANE	4800 U	96000 U	ND	ND		0/5
1,1,2-TRICHLOROETHANE	4800 U	96000 U	ND	ND		0/5
BENZENE	4800 U	96000 U	ND	ND		0/5
TRANS-1,3-DICHLOROPROPENE	4800 U	96000 U	ND	ND		0/5
BROMOFORM	4800 U	96000 U	ND	ND		0/5
4-METHYL-2-PENTANONE (MIBK)	4800 U	96000 U	ND	ND		0/5
2-HEXANONE	4800 U	96000 U	ND	ND		0/5
TETRACHLOROETHENE	4800 U	96000 U	ND	ND		0/5
1,1,2,2-TETRACHLOROETHANE	4800 U	96000 U	ND	ND		0/5
TOLUENE	4800 U	96000 U	5000 J	5000 J	65-FS05-LB01W	1/5
CHLOROBENZENE	4800 U	96000 U	ND	ND		0/5
ETHYLBENZENE	4800 U	96000 U	ND	ND		0/5
STYRENE	4800 U	96000 U	ND	ND		0/5
XYLENES (TOTAL)	4800 U	96000 U	ND	ND		0/5
ATLENED (TOTAL)	-000 0	30000 0		no		010

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
SEMIVOLATILES (ug/kg)					
PHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2-CHLOROPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
1,3-DICHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
1,4-DICHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
1,2-DICHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
2-METHYLPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2,2'-OXYBIS(1-CHLOROPROPANE)	8000 U	1000 U	4000 U	4000 U	4000 U
4-METHYLPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
N-NITROSO-DI-N-PROPYLAMINE	8000 U	1000 U	4000 U	4000 U	4000 U
HEXACHLOROETHANE	8000 U	1000 U	4000 U	4000 U	4000 U
NITROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
ISOPHORONE	8000 U	1000 U	4000 U	4000 U	4000 U
2-NITROPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2,4-DIMETHYLPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2,4-DICHLOROPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
1,2,4-TRICHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
NAPHTHALENE	8000 U	1000 U	4000 U	4000 U	4000 U
4-CHLOROANILINE	8000 U	1000 U	4000 U	4000 U	4000 U
HEXACHLOROBUTADIENE	8000 U	1000 U	4000 U	4000 U	4000 U
4-CHLORO-3-METHYLPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2-METHYLNAPHTHALENE	8000 U	1000 U	4000 U	4000 U	4000 U
HEXACHLOROCYCLOPENTADIENE	8000 U	1000 U	4000 U	4000 U	4000 U
2,4,6-TRICHLOROPHENOL	8000 U	1000 U	4000 U	4000 U	4000 U
2,4,5-TRICHLOROPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
2-CHLORONAPHTHALENE	8000 U	1000 U	4000 U	4000 U	4000 U
2-NITROANILINE	20000 U	2500 U	10000 U	10000 U	10000 U
DIMETHYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
ACENAPHTHYLENE	8000 U	1000 U	4000 U	4000 U	4000 U
2,6-DINITROTOLUENE	8000 U	1000 U	4000 U	4000 U	4000 U
3-NITROANILINE	20000 U	2500 U	10000 UJ	10000 UJ	10000 U
ACENAPHTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
2,4-DINITROPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
4-NITROPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
DIBENZOFURAN	8000 U	1000 U	4000 U	4000 U	4000 U

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
SEMIVOLATILES (ug/kg) cont.					
2,4-DINITROTOLUENE	8000 U	1000 U	4000 U	4000 U	4000 U
DIETHYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
FLUORENE	8000 U	1000 U	4000 U	4000 U	4000 U
4-NITROANILINE	20000 U	2500 U	10000 U	10000 U	10000 U
4,6-DINITRO-2-METHYLPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
N-NITROSODIPHENYLAMINE	8000 U	1000 U	4000 U	4000 U	4000 U
4-BROMOPHENYL PHENYL ETHER	8000 U	1000 U	4000 U	4000 U	4000 U
HEXACHLOROBENZENE	8000 U	1000 U	4000 U	4000 U	4000 U
PENTACHLOROPHENOL	20000 U	2500 U	10000 U	10000 U	10000 U
PHENANTHRENE	8000 U	1000 U	4000 U	4000 U	4000 U
ANTHRACENE	8000 U	1000 U	4000 U	4000 U	4000 U
CARBAZOLE	8000 U	1000 U	4000 U	4000 U	4000 U
DI-N-BUTYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
BUTYL BENZYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
3,3'-DICHLOROBENZIDINE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(A)ANTHRACENE	8000 U	1000 U	4000 U	4000 U	4000 U
CHRYSENE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-ETHYLHEXYL)PHTHALATE	U 0008	1000 U	4000 U	4000 U	4000 U
DI-N-OCTYL PHTHALATE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(B)FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(K)FLUORANTHENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(A)PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
INDENO(1,2,3-CD)PYRENE	8000 U	1000 U	4000 U	4000 U	4000 U
DIBENZO(A,H)ANTHRACENE	8000 U	1000 U	4000 U	4000 U	4000 U
BENZO(G,H,I)PERYLENE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-CHLOROETHOXY)-METHANE	8000 U	1000 U	4000 U	4000 U	4000 U
BIS(2-CHLOROETHYL) ETHER	8000 U	1000 U	4000 U	4000 U	4000 U
4-CHLOROPHENYL PHENYL ETHER	8000 U	1000 U	4000 U	4000 U	4000 U

)

DATE COLLECTED SEMIVOLATILES (ug/kg) PHENOL 1000 U 8000 U ND ND 0.5 2-CHLOROPHENOL 1000 U 8000 U ND ND 0.5 1,3-DICHLOROBENZENE 1000 U 8000 U ND ND 0.5 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 0.5 2,2-OXYBIS(-FOLKOROPRANE) 1000 U 8000 U ND ND 0.5 2,2-OXYBIS(-FOLKOROPROPANE) 1000 U 8000 U ND ND 0.5 X-MTROSO-DIH-PROPYLAMINE 1000 U 8000 U ND ND 0.5 NITROBENZENE 1000 U 8000 U ND ND 0.5 NITROBENZENE 1000 U 8000 U ND ND 0.5 SIGPHORONE 1000 U 8000 U ND ND 0.5 2,4-DICHTYPLENOL 1000 U 8000 U ND ND 0.5 2,4-DICHTYPLENOL 1000 U 8000 U ND <t< th=""><th>SAMPLE ID.</th><th>MINIMUM NONDETECTED</th><th></th><th></th><th>MAXIMUM</th><th>LOCATION OF MAXIMUM DETECTED</th><th>FREQUENCY OF DETECTION</th></t<>	SAMPLE ID.	MINIMUM NONDETECTED			MAXIMUM	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PHENOL 1000 U 8000 U ND ND 05 2-CHLOROPHENOL 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,2-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,4-DICHLOROPROPANE) 1000 U 8000 U ND ND 05 4-METHYLPHENOL 1000 U 8000 U ND ND 05 NITROSO-DI-N-PROPYLAMINE 1000 U 8000 U ND ND 05 NITROBENZENE 1000 U 8000 U ND ND 05 SIGOPHORONE 1000 U 8000 U ND ND 05 SIGOPHORONE 1000 U 8000 U ND ND 05 2,4-TIROPHENOL 1000 U 8000 U ND	DATE COLLECTED						
PHENOL 1000 U 8000 U ND ND 05 2-CHLOROPHENOL 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,2-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2,4-DICHLOROPROPANE) 1000 U 8000 U ND ND 05 4-METHYLPHENOL 1000 U 8000 U ND ND 05 NITROSO-DI-N-PROPYLAMINE 1000 U 8000 U ND ND 05 NITROBENZENE 1000 U 8000 U ND ND 05 SIGOPHORONE 1000 U 8000 U ND ND 05 SIGOPHORONE 1000 U 8000 U ND ND 05 2,4-TIROPHENOL 1000 U 8000 U ND							
2-CHLÖROPHENOL 1000 U 8000 U ND ND ND 05 1,3-DICHLOROBENZENE 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2.METHYLPHENOL 1000 U 8000 U ND ND 05 2.2-OXYBIS(1-CHLOROPENZENE 1000 U 8000 U ND ND 05 2.4-DICHTHANE 1000 U 8000 U ND ND 05 HEXACHLOROPROPANE) 1000 U 8000 U ND ND 05 INTROBENZENE 1000 U 8000 U ND ND 05 ISOPHORONE 1000 U 8000 U ND ND 05 2.4-DICHTAVENE 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U<	• +	4000 11	0000 11	110			
1,3-DICHLOROBENZENE 1000 U 8000 U ND ND ND 05 1,4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2-METHYLPHENOL 1000 U 8000 U ND ND 05 2-METHYLPHENOL 1000 U 8000 U ND ND 05 2-ACYNBIG-CHLOROPROPANE) 1000 U 8000 U ND ND 05 2-ACYNBIG-CHLOROPROPANE) 1000 U 8000 U ND ND 05 HEXACHLOROETHAME 1000 U 8000 U ND ND 05 ISOPHORONE 1000 U 8000 U ND ND 05 SOPHORONE 1000 U 8000 U ND ND 05 2.4-DIRLOROPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8							
1.4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 1.2-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2.4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 2.2-OXYBIS(1-CHLOROPROPANE) 1000 U 8000 U ND ND 05 4-METHYLPHENOL 1000 U 8000 U ND ND 05 HEXACHLOROPTYLAMINE 1000 U 8000 U ND ND 05 INTROBENZENE 1000 U 8000 U ND ND 05 ISOPHORONE 1000 U 8000 U ND ND 05 2.4-DIKETHYLPHENOL 1000 U 8000 U							
1.2-DICHLOROBENZENE 1000 U 8000 ND ND ND 05 2.METHYLPHENOL 1000 U 8000 ND ND 05 2.P.OXYBIS(1-CHLOROPROPANE) 1000 U 8000 ND ND 05 4.METHYLPHENOL 1000 U 8000 ND ND 05 4.METHYLPHENOL 1000 U 8000 ND ND 05 HEXACHLOROETHANE 1000 U 8000 ND ND 05 NITROBENZENE 1000 U 8000 ND ND 05 SOPHORONE 1000 U 8000 ND ND 05 2.4-DIMETHYLPHENOL 1000 U 8000 ND ND 05 2.4-DIMETHYLPHENOL 1000 U 8000 ND ND 05 2.4-DIMETHYLPHENOL 1000 U 8000 ND ND 05 2.4-DIMETHOROL 1000 U	•						
2.METHYLPHENOL 1000 U 8000 ND ND ND 05 2.27-0XYBIS(1-CHLOROPROPANE) 1000 U 8000 ND ND ND 05 AMETHYLPHENOL 1000 U 8000 ND ND ND 05 NITROSO-DI-N-PROPYLAMINE 1000 U 8000 ND ND ND 05 HEXACHLOROETHANE 1000 U 8000 ND ND ND 05 ISOPHORONE 1000 U 8000 ND ND ND 05 2.4-DIRETHYLPHENOL 1000 U 8000 ND ND	•						
2.2-OXYBIS(1-CHLOROPROPANE) 1000 U 6000 U ND ND 05 4-METHYLPHENOL 1000 U 8000 U ND ND 05 HEXACHLOROETHANE 1000 U 8000 U ND ND 05 HEXACHLOROETHANE 1000 U 8000 U ND ND 05 ISOPHORONE 1000 U 8000 U ND ND 05 2.4-DIMETHYLPHENOL 1000 U 8000 U ND ND 05 2.4-DIMETHYLPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 05 4.4-DICHLOROBENZENE 1000 U 8000 U ND ND 05 4.2-LATRICHLOROBUTADIENE 1000 U 8000 U<							
4METHYLPHENOL 1000 U 8000 U ND ND 0/5 N-NITROSC-DI-N-PROPYLAMINE 1000 U 8000 U ND ND 0/5 HEXACHLOROETHANE 1000 U 8000 U ND ND 0/5 IRCADENCACETHANE 1000 U 8000 U ND ND 0/5 ISOPHORONE 1000 U 8000 U ND ND 0/5 2.4-DIRCHENCL 1000 U 8000 U ND ND 0/5 2.4-DIRCHENCL 1000 U 8000 U ND ND 0/5 2.4-DIRCHALENE 1000 U 8000 U ND ND 0/5 2.4-DIRCHLOROBENZENE 1000 U 8000 U ND ND 0/5 1.2.4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U <							
N-NITROSO-DI-N-PROPYLAMINE 1000 U 8000 U ND ND 0/5 HEXACHLOROETHANE 1000 U 8000 U ND ND 0/5 INTROBENZEME 1000 U 8000 U ND ND 0/5 ISOPHORONE 1000 U 8000 U ND ND 0/5 2-NITROPHENOL 1000 U 8000 U ND ND 0/5 2-AURTOPHENOL 1000 U 8000 U ND ND 0/5 2-4-DIGHLOROPHENOL 1000 U 8000 U ND ND 0/5 2-4-DIGHLOROPHENOL 1000 U 8000 U ND ND 0/5 2-4-DIGHLOROPHENOL 1000 U 8000 U ND ND 0/5 A-CHLOROANILINE 1000 U 8000 U N							
HEXACHLOROETHANE 1000 U 8000 U ND ND 0/5 NITROBENZENE 1000 U 8000 U ND ND 0/5 ISOPHORONE 1000 U 8000 U ND ND 0/5 2.4-DIROPHENOL 1000 U 8000 U ND ND 0/5 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2.4-DICHLOROBENZENE 1000 U 8000 U ND ND 0/5 1.2.4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 8000 U ND ND 0/5 4-CHLOROBUTADIENE 1000 8000 U ND ND 0/5 2.4-STRICHLOROPHENOL 1000 8000 U							
NITROBENZENE 1000 U 8000 U ND ND ND 05 ISOPHORONE 1000 U 8000 U ND ND 05 2-NITROPHENOL 1000 U 8000 U ND ND 05 2-ADIMETHYLPHENOL 1000 U 8000 U ND ND 05 2,4-DIMETHYLPHENOL 1000 U 8000 U ND ND 05 2,4-DIMETHYLPHENOL 1000 U 8000 U ND ND 05 1,2,4-TRICHLOROBENZENE 1000 U 8000 U ND ND 05 NAPHTHALENE 1000 U 8000 U ND ND 05 4-CHLOROANILINE 1000 U 8000 U ND ND 05 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 05 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 05 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 05 2-AGLOROCYCLOPENTADIENE 1000 U 8							
ISOPHORONE 1000 U 8000 U ND ND ND Of 2-NITROPHENOL 1000 U 8000 U ND ND ND 0/5 2,4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 1,2,4-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 1,2,4-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 NAPHTHALENE 1000 U 8000 U ND ND 0/5 4-CHLOROBUTADIENE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 4-CHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLO							
2-NITROPHENOL 1000 U 8000 U ND ND 05 2,4-DIMETHYLPHENOL 1000 U 8000 U ND ND 0/5 2,4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 1,2,4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 NAPHTHALENE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 4-CHLORO-CYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U							
2.4-DIMETHYLPHENOL 1000 U 8000 U ND ND 05 2.4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 1.2,4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 NAPHTHALENE 1000 U 8000 U ND ND 0/5 A-CHLOROANILINE 1000 U 8000 U ND ND 0/5 +CHLOROANILINE 1000 U 8000 U ND ND 0/5 +CHLOROANILINE 1000 U 8000 U ND ND 0/5 +CHLOROANILINE 1000 U 8000 U ND ND 0/5 2-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLAPHENOL 1000 U 8000 U ND ND 0/5 2-AGETHYLAPHENOL 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U							
2,4-DICHLOROPHENOL 1000 U 8000 U ND ND 0/5 1,2,4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 NAPHTHALENE 1000 U 8000 U ND ND 0/5 A-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-A,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U							
1,2,4-TRICHLOROBENZENE 1000 U 8000 U ND ND 0/5 NAPHTHALENE 1000 U 8000 U ND ND 0/5 4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 HEXACHLOROBUTADIENE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-HLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 2,6-DINITROTOLUENE<							
NAPHTHALENE 1000 U 8000 U ND ND O/5 4-CHLOROANILINE 1000 U 8000 U ND ND O/5 HEXACHLOROBUTADIENE 1000 U 8000 U ND ND O/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND O/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND O/5 2-AGETRICHLOROPHENOL 2000 U 8000 U ND ND O/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND O/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND O/5 2-NITROANILINE 2500 U 20000 U ND ND O/5 2-GENAPHTHYLPHTHALATE 1000 U	-,						
4-CHLOROANILINE 1000 U 8000 U ND ND 0/5 HEXACHLOROBUTADIENE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-AG-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 2,6-DINITROANILINE							
HEXACHLOROBUTADIENE 1000 U 8000 U ND ND 0/5 4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 HEXACHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-AITROANILINE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE <							
4-CHLORO-3-METHYLPHENOL 1000 U 8000 U ND ND 0/5 2-METHYLNAPHTHALENE 1000 U 8000 U ND ND 0/5 HEXACHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 10							
2-METHYLNAPHTHALENE 1000 U 8000 U ND ND ND 0/5 HEXACHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
HEXACHLOROCYCLOPENTADIENE 1000 U 8000 U ND ND 0/5 2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-cHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2,4,6-TRICHLOROPHENOL 1000 U 8000 U ND ND 0/5 2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2,4,5-TRICHLOROPHENOL 2500 U 20000 U ND ND 0/5 2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2-CHLORONAPHTHALENE 1000 U 8000 U ND ND 0/5 2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2-NITROANILINE 2500 U 20000 U ND ND 0/5 DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
DIMETHYL PHTHALATE 1000 U 8000 U ND ND 0/5 ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
ACENAPHTHYLENE 1000 U 8000 U ND ND 0/5 2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2,6-DINITROTOLUENE 1000 U 8000 U ND ND 0/5 3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
3-NITROANILINE 2500 U 20000 U ND ND 0/5 ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
ACENAPHTHENE 1000 U 8000 U ND ND 0/5							
2,4-DINITROPHENOL 2500 U 20000 U ND ND 0/5							
4-NITROPHENOL 2500 U 20000 U ND ND 0/5	4-NITROPHENOL						
DIBENZOFURAN 1000 U 8000 U ND ND 0/5	DIBENZOFURAN	1000 U	8000 U	ND	ND		0/5

	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF	
SAMPLE ID.	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION	
DATE COLLECTED							
SEMIVOLATILES (ug/kg) cont.			·				
2,4-DINITROTOLUENE	1000 U	8000 U	ND	ND		0/5	
DIETHYL PHTHALATE	1000 U	8000 U	ND	ND		0/5	
FLUORENE	1000 U	8000 U	ND	ND		0/5	
4-NITROANILINE	2500 U	20000 U	ND	ND		0/5	
4,6-DINITRO-2-METHYLPHENOL	2500 U	20000 U	ND	ND		0/5	
N-NITROSODIPHENYLAMINE	1000 U	8000 U	ND	ND		0/5	
4-BROMOPHENYL PHENYL ETHER	1000 U	8000 U	ND	ND		0/5	
HEXACHLOROBENZENE	1000 U	8000 U	ND	ND		0/5	
PENTACHLOROPHENOL	2500 U	20000 U	ND	ND		0/5	
PHENANTHRENE	1000 U	8000 U	ND	ND		0/5	
ANTHRACENE	1000 U	8000 U	ND	ND		0/5	
CARBAZOLE	1000 U	8000 U	ND	ND		0/5	
DI-N-BUTYL PHTHALATE	1000 U	8000 U	ND	ND		0/5	
FLUORANTHENE	1000 U	8000 U	ND	ND		0/5	
PYRENE	1000 U	8000 U	ND	ND		0/5	
BUTYL BENZYL PHTHALATE	1000 U	8000 U	ND	ND		0/5	
3,3'-DICHLOROBENZIDINE	1000 U	8000 U	ND	ND		0/5	
BENZO(A)ANTHRACENE	1000 U	8000 U	ND	ND		0/5	
CHRYSENE	1000 U	8000 U	ND	ND		0/5	
BIS(2-ETHYLHEXYL)PHTHALATE	1000 U	8000 U	ND	ND		0/5	
DI-N-OCTYL PHTHALATE	1000 U	8000 U	ND	ND		0/5	
BENZO(B)FLUORANTHENE	1000 U	8000 U	ND	ND		0/5	
BENZO(K)FLUORANTHENE	1000 U	8000 U	ND	ND		0/5	
BENZO(A)PYRENE	1000 U	8000 U	ND	ND		0/5	
INDENO(1,2,3-CD)PYRENE	1000 U	8000 U	ND	ND		0/5	
DIBENZO(A,H)ANTHRACENE	1000 U	8000 U	ND	ND		0/5	
BENZO(G,H,I)PERYLENE	1000 U	8000 U	ND	ND		0/5	
BIS(2-CHLOROETHOXY)-METHANE	1000 U	8000 U	ND	ND		0/5	
BIS(2-CHLOROETHYL) ETHER	1000 U	8000 U	ND	ND		0/5	
4-CHLOROPHENYL PHENYL ETHER	1000 U	8000 U	ND	ND		0/5	

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
PESTICIDE/PCBS (ug/kg)					
ALPHA-BHC	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
BETA-BHC	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
DELTA-BHC	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
GAMMA-BHC(LINDANE)	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
ALDRIN	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
HEPTACHLOR EPOXIDE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
ENDOSULFAN I	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
DIELDRIN	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDE	15 J	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDRIN	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN II	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDD	40 J	6.9 J	9.8 UJ	9.9 UJ	9.9 UJ
ENDOSULFAN SULFATE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
4,4'-DDT	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
METHOXYCHLOR	51 UJ	51 UJ	50 UJ	51 UJ	51 UJ
ENDRIN KETONE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ENDRIN ALDEHYDE	9.9 UJ	9.9 UJ	9.8 UJ	9.9 UJ	9.9 UJ
ALPHA CHLORDANE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
GAMMA CHLORDANE	5.1 UJ	5.1 UJ	5 UJ	5.1 UJ	5.1 UJ
TOXAPHENE	510 UJ	510 UJ	500 UJ	510 UJ	510 UJ
AROCLOR 1016	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1221	200 UJ				
AROCLOR 1232	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1242	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1248	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1254	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ
AROCLOR 1260	99 UJ	99 UJ	98 UJ	99 UJ	99 UJ

SAMPLE ID. DATE COLLECTED		MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/kg)						
ALPHA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
BETA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
DELTA-BHC	5 UJ	5.1 UJ	ND	ND		0/5
GAMMA-BHC(LINDANE)	5 UJ	5.1 UJ	ND	ND		0/5
HEPTACHLOR	5 UJ	5.1 UJ	ND	ND		0/5
ALDRIN	5 UJ	5.1 UJ	ND	ND		0/5
HEPTACHLOR EPOXIDE	5 UJ	5.1 UJ	ND	ND		0/5
ENDOSULFAN I	5 UJ	5.1 UJ	ND	ND		0/5
DIELDRIN	9.8 UJ	9.9 UJ	ND	ND		0/5
4,4'-DDE	9.8 UJ	9.9 UJ	15 J	15 J	65-FS04-BG01W	1/5
ENDRIN	9.8 UJ	9.9 UJ	ND	ND		0/5
ENDOSULFAN II	9.8 UJ	9.9 UJ	ND	ND		0/5
4,4'-DDD	9.8 UJ	9.9 UJ	6.9 J	40 J	65-FS04-BG01W	2/5
ENDOSULFAN SULFATE	9.8 UJ	9.9 UJ	ND	ND		0/5
4,4'-DDT	9.8 UJ	9.9 UJ	ND	ND		0/5
METHOXYCHLOR	50 UJ	51 UJ	ND	ND		0/5
ENDRIN KETONE	9.8 UJ	9.9 UJ	ND	ND		0/5
ENDRIN ALDEHYDE	9.8 UJ	9.9 UJ	ND	ND		0/5
ALPHA CHLORDANE	5 UJ	5.1 UJ	ND	ND		0/5
GAMMA CHLORDANE	5 UJ	5.1 UJ	ND	ND		0/5
TOXAPHENE	500 UJ	510 UJ	ND	ND		0/5
AROCLOR 1016	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1221	200 UJ	200 UJ	ND	ND		0/5
AROCLOR 1232	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1242	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1248	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1254	98 UJ	99 UJ	ND	ND		0/5
AROCLOR 1260	98 UJ	99 UJ	ND	ND		0/5

ſ

SAMPLE ID. DATE COLLECTED	65-FS04-BG01W 05/17/95	65-FS04-RS01W 05/17/95	65-FS05-BG01W 05/16/95	65-FS05-LB01W 05/16/95	65-FS05-RS01W 05/16/95
ANALYTES (mg/kg)					
ALUMINUM	18.8 J	18 J	3.3 U	9.6 J	2.1 U
ANTIMONY	1 U	1.5	1.1	1.4	1.1
ARSENIC	0.15 J	0.08 UJ	0.08 UJ	0.08 UJ	0.08 UJ
BARIUM	1.8 J	2.9 J	1.8 J	1.3 J	0.44 J
BERYLLIUM	0.02 U	0.015 U	0.028	0.015 U	0.015 U
BORON	0.72 U	0.71 U	0.82 U	0.88 U	0.71 U
CADMIUM	0.1 U				
CALCIUM	19600 J	42500 J	22600 J	22400 J	8840 J
CHROMIUM	0.7 U	0.89 U	0.57 U	0.55 U	0.34 U
COBALT	0.32 U				
COPPER	1.1	0.68 U	0.5 U	0.58 U	8.6
CYANIDE, TOTAL	0.5 U				
IRON	22.9 J	24.4 J	7.8 J	26.1 J	11.8 J
LEAD	0.17	0.49	0.055 U	0.054 U	0.33
MAGNESIUM	557 J	951 J	538 J	593 J	370 J
MANGANESE	3.6 J	4.1 J	4.9 J	2.3 J	1 J
MERCURY	0.04 UJ	0.11 J	0.04 UJ	0.11 J	0.04 UJ
MOLYBDENUM	0.12 U				
NICKEL	0.88 U	0.87 U	0.87 U	0.87 U	0.87 U
POTASSIUM	2580 J	1850 J	2790 J	2860 J	2740 J
SELENIUM	0.42	0.17	0.16	0.33	0.32
SILVER	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U
SODIUM	1260	2400	1250	1160	992
THALLIUM	0.12	0.11	0.11	0.11	0.11
TIN	9.6 U				
VANADIUM	0.12 U				
ZINC	26.2 J	31.5 J	26.6 J	14.8 J	23.3 J

......

	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
SAMPLE ID.	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
DATE COLLECTED					01120120	BEIEGHON
ANALYTES (mg/kg)						
ALUMINUM	2.1 U	3.3 U	9.6 J	18.8 J	65-FS04-BG01W	3/5
ANTIMONY	1 U	1 U	1.1	1.5	65-FS04-RS01W	4/5
ARSENIC	0.08 UJ	0.08 UJ	0.15 J	0.15 J	65-FS04-BG01W	1/5
BARIUM	NA	NA	0.44 J	2.9 J	65-FS04-RS01W	5/5
BERYLLIUM	0.015 U	0.02 U	0.028	0.028	65-FS05-BG01W	1/5
BORON	0.71 U	0.88 U	ND	ND		0/5
CADMIUM	0.1 U	0.1 U	ND	ND		0/5
CALCIUM	NA	NA	8840 J	42500 J	65-FS04-RS01W	5/5
CHROMIUM	0.34 U	0.89 U	ND	ND		0/5
COBALT	0.32 U	0.32 U	ND	ND		0/5
COPPER	0.5 U	0.68 U	1.1	8.6	65-FS05-RS01W	2/5
CYANIDE, TOTAL	0.5 U	0.5 U	ND	ND		0/5
IRON	NA	NA	7.8 J	26.1 J	65-FS05-LB01W	5/5
LEAD	0.054 U	0.055 U	0.17	0.49	65-FS04-RS01W	3/5
MAGNESIUM	NA	NA	370 J	951 J	65-FS04-RS01W	5/5
MANGANESE	NA	NA	1 J	4.9 J	65-FS05-BG01W	5/5
MERCURY	0.04 UJ	0.04 UJ	0.11 J	0.11 J	65-FS05-LB01W	2/5
MOLYBDENUM	0.12 U	0.12 U	ND	ND		0/5
NICKEL	0.87 U	0.88 U	ND	ND		0/5
POTASSIUM	NA	NA	1850 J	2860 J	65-FS05-LB01W	5/5
SELENIUM	NA	NA	0.16	0.42	65-FS04-BG01W	5/5
SILVER	0.094 U	0.1 U	ND	ND		0/5
SODIUM	NA	NA	992	2400	65-FS04-RS01W	5/5
THALLIUM	NA	NA	0.11	0.12	65-FS04-BG01W	5/5
TIN	9.6 U	9.6 U	ND	ND		0/5
VANADIUM	0.12 U	0.12 U	ND	ND		0/5
ZINC	NA	NA	14.8 J	31.5 J	65-FS04-RS01W	5/5

APPENDIX 0.13 RESULT OF ENGINEERING PARAMETERS

CTO 312 SITE 65 SOIL

LOCATION	65-SB06
DATE SAMPLED	04/10/95
UNITS	MG/KG
ENGINEERING PHOSPHORUS TOTAL KJELDAHL NITROGEN (TKN) ALKALINITY, AS CACO3 CHEMICAL OXYGEN DEMAND (COD) HETEROTROPHIC PLATE COUNT (GM) CARBON, TOTAL ORGANIC	70 220 680 2140 500,000 3,290

ALKALINITY ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3333
Contract Name:	Baker Camp Lejeune	Analysis Date:	04/13/95
Sample Matrix:	Soil	Concentration Units:	mg/kg (dry weight)
		-	
		-	
Client Sample ID	Lab Sample ID	Result	Qualifier
Client Sample ID Method Blank	Lab Sample ID AE9732	Result 200	Qualifier U

+ - Positive result.
 U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

CHEMICAL OXYGEN DEMAND ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3333
Contract Name:	Baker Camp Lejeune	Analysis Date:	04/14/95
Sample Matrix:	Soil	Concentration Units:	mg/kg (dry weight)
Client Sample ID	Lab Sample ID	Result	Qualifier
Client Sample ID Method Blank	Lab Sample ID AE9743	Result 400	Qualifier U

+ - Positive result.

.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

--

TOTAL KJELDAHL NITROGEN ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3333
Contract Name:	Baker Camp Lejeune	Analysis Date:	04/18/95
Sample Matrix:	Soil	Concentration Units:	mg/kg (dry weight)
	-		
Client Sample ID	Lab Sample ID	Result	Qualifier
Client Sample ID Method Blank	Lab Sample ID AE9736	Result 10	Qualifier U

+ - Positive result.
U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

TOTAL PHOSPHOROUS ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3333
Contract Name:	Baker Camp Lejeune	Analysis Date:	05/04/95
Sample Matrix:	Soil	Concentration Units:	mg/kg (dry weight)
			•
Client Sample ID	Lab Sample ID	Result	Qualifier
Client Sample ID Method Blank	Lab Sample ID AF2049	Result 0.20	Qualifier U

+ - Positive result.

QUANTERRA

65-SB06

WO #: A40JT LAB #: C5D130061-001 MATRIX: SOLID				4/10/95 4/13/95
	INORGANIC AN	ALYTICAL REPORT		
PARAMETER	REPORTIN	G	PREPARATION -	QC
	<u>RESULT LIMIT</u>	<u>UNIT METHOD</u>	ANALYSIS DATE	BATCH
Solids, Total (TS)	88.7	% MCAWW 160.	3 M 4/25/95	5117046
Carbon, Total Organic	3,290 56.4	mg/kg MOSA WALKL	EY- 4/23/95	5114121

NOTE: DRY WEIGHT

0005003A

[®] Microbac Laboratories, Inc.

PAGE

1

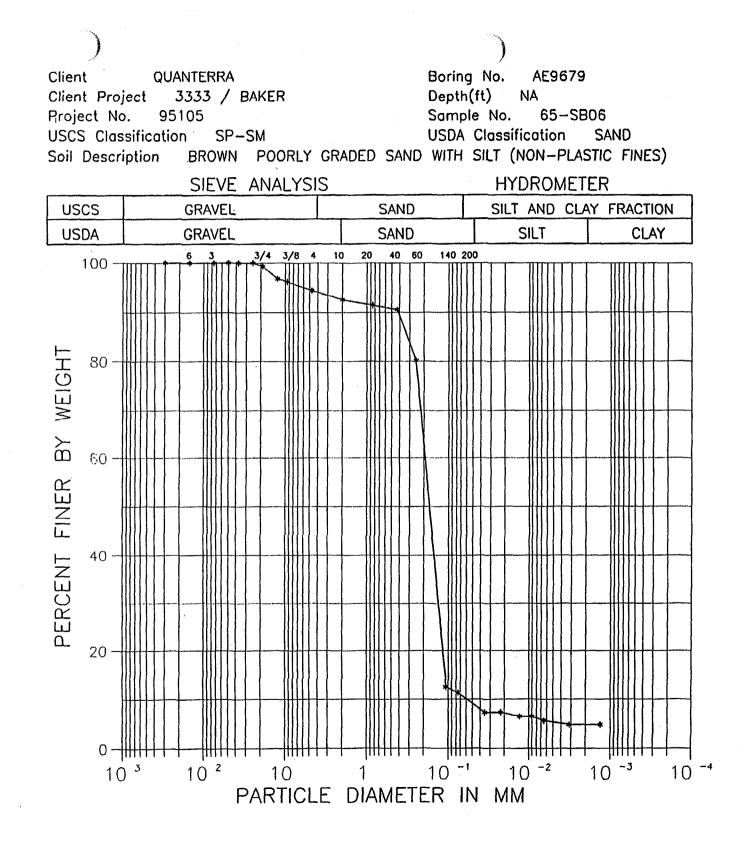
4580 McKNIGHT ROAD PITTSBURGH, PA 15237 (412) 931-5851

FOOD . WATER . WASTES . AIR . FUEL

CERTIFICATE OF ANALYSIS

	ENVIRONMENTAL SERV. EBROOK PIKE	DATE SAMPLED TIME SAMPLED	4/10/95 16:50	DATE RECEIVED TIME RECEIVED	4/13/95 00:00
KNDXVILLE ATTN: JAJ SUBJECT: SPECIAL	TN 37921 IME MCKINNEY TESTING	SAMPLER PERMIT NO.	CUST	DATE REPORTED ORDER NO. Invoice No. Cust. No. Cust. P.O.	4/17/95 9504-00388 015738 Q003 2369
SAMPLE #	TEST PERFORMED	METHOD	RESUL	T	UNITS
1 65-5806 AE9678	3 SDIL 4-10-95 1650 PRDJ.#3333/BAKER			•	
	HETEROTROPHIC PLATE COUNT	SMEWW 9215C	500,0	00	GM

SIT AF CTORE


<u>.</u>

Ż

Data and other information contained on this Certificate of Analysis, and other accompanying documents, represent only the sample(s) analyzed. This information is client confidential and may not be reproduced for publication without written permission from Microbac Laboratories.

:

WASH SIEVE ANALYSIS

Client Client Project Project No. Boring No.	QUANTEF 3333 / BA 95105 AE9679			Tested By Checked E	By ge	Date	04-18-95 5 · 2 · 95
Depth(ft.)	NA						
Sample No.	65-SB06						
Soil Description		BROWN	POORLY	GRADED S	SAND WI	TH SILT (NON-PI	LASTIC FINES)
Wt. of Total Sample	(dry) (2)		1058.2	2 gm.	Wt	of Grand Total	(1) 8478.29
Wt. of +#200 Samp	ole		937.2	2 gm.		<i>*</i>	

Wt. of -#200 Sample

. **. . z** gm. 121.0 gm.

J Factor 0.9924

(Percent finer than 3/4")

Sieve	Sieve Opening (mm)	Wt. of Soil Retained (gm.)		Percent Retained	Accumulate Percent Retained	Percent Finer	Final Percent Finer (3)
12"	300.0	0.00		0.00	0.00	100.00	100.0
6"	150.0	0.00		0.00	0.00	100.00	100.0
3"	75.0	0.00		0.00	0.00	100.00	100.0
2"	50.0	0.00		0.00	0.00	100.00	100.0
1 1/2"	37.5	0.00	+ 3/4"	0.00	0.00	100.00	100.0
1"	25.0	0.00	SIEVE	0.00	0.00	100.00	100.0
3/4"	19.0	64.59	ANALYSIS	0.76	0.76	99.24	99.2
1/2"	12.5	27.12	- 3/4"	2.56	2.56	97.44	96.7
3/8"	9.5	6.78	SIEVE	0.64	3.20	96.80	96.1
#4	4.75	17.84	ANALYSIS	1.69	4.89	95.11	94.4
#10	2.00	19.82		1.87	6.76	93.24	92.5
#20	0.85	12.08		1.14	7.90	92.10	91.4
#40	0.425	9.42		0.89	8.79	91.21	90.5
#60	0.250	110.54		10.45	19.24	80.76	80.1
#140	0.106	720.40		68.08	87.31	12.69	12.6
#200	0.075	13.24		1.25	88.57	11.43	11.3
Pan	-	121.00		11.43	100.00	-	-

Water Content	
Tare No.	1082
Wgt. Tare + WS.	1331.80
Wgt. Tare + DS.	1163.60
Wgt. Tare	105.36
Wgt. Of Water	168.20
.Wgt. Of DS.	1058.24

TOTAL WET WGHT. -3/4 SIEVE 9751

TOTAL DRY WGHT. -3/4 SIEVE 8414

% Water

Note: 1) The +3/4" sieve analysis is based on the grand total dry weight of material.

15.9

2) The -3/4" sieve analysis is based on the total dry weight of the split portion of sample.

3) The final percent finer combines the two analysis.

HYDROMETER ANALYSIS

Client Client Project Project No. Boring No. Depth(ft.) Sample No.	QUANTERRA 3333 / BAKER 95105 AE9679 NA 65-SB06	Tested By TO Checked By	Date Date	04-18-95 5. 2.95
Soil Sample Weight				
Container No.	1133			
Wt. Contain.		K Factor		0.01308
& Dry Soil	117.83 gm.	Composite Correction		6.63
Wt. Contain.	106.07 gm.	a Factor		0.99
Wt. Dispers.	5.00 gm.			
Wt. Dry Soil	6.76 gm.	% Finer Than No. 200		11.35
Temperature C	22.3 Measure	ed		
Specific Gravity	2.70 Assume	ed		

Elapsed Time (min.)	R Measu		R Corrected	N (%)	D (mm)	N' (%)
0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	10.5	11.0	4.4	64.0	0.0352	7.3
5		11.0	4.4	64.0	0.0223	7.3
15		10.5	3.9	56.7	0.0129	6.4
30		10.5	3.9	56.7	0.0091	6.4
60		10.0	3.4	49.4	0.0065	5.6
250		9.5	2.9	42.0	0.0032	4.8
1440		9.5	2.9	42.0	0.0013	4.8

Cotechnics

	OUANTERRA 3333 / BAKER 95105 AE9679 NA 65-SB06
DIAMETER (mm)	PERCENT FINER
300.00 150.00 75.000 50.000 37.500 25.000 19.000 12.500 9.5000 4.7500 2.0000 0.8500 0.4250 0.2500 0.1060 0.0750 0.0352 0.0223 0.0129 0.0091 0.0065 0.0032 0.0013	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 99.2\\ 96.7\\ 96.1\\ 94.4\\ 92.5\\ 91.4\\ 90.5\\ 80.1\\ 12.6\\ 11.3\\ 7.3\\ 7.3\\ 7.3\\ 6.4\\ 6.4\\ 5.6\\ 4.8\\ 4.8\\ 4.8\end{array}$
SIEVE OPENING (mm)	PERCENT FINER
100.00	100.00
2.00	92.53
0.05	9.16
0.002	4.77

PERCENT OF EACH COMPO	DNENT	CORRECTED PERCENT -2.0 mm MATERIAL FOR USDA DETERMINATION
GRAVEL	7.47	0.00
SAND	83.37	90.10
SILT	4.39	4.74
CLAY	4.77	5.16

USDA CLASSIFICATION

SAND

04-26-95 5·2·95

ATTERBERG LIMITS TEST

Tested By

Checked By

BS

Date

Date

Client Client Project Project No. Boring No. Depth(ft.) Sample No. Soil Description QUANTERRA 3333 / BAKER 95105 AE9679 NA 65-SB06

NON PLASTIC (-40)

Liquid Limit Tare Number Wt. Tare & WS (gm) Wt. Tare & DS (gm) Wt. Water (gm) Wt. Tare (gm) Wt. DS (gm) No. of Blows Water Content (%)

Plastic Limit

Tare Number Wt. Tare & WS (gm) Wt. Tare & DS (gm) Wt. Water (gm) Wt. Tare (gm) Wt. DS (gm) Moisture Content (%)

Non Plastic Fines

CTO 312 SITE 65 GROUNDWATER

LOCATION DATE SAMPLED	65-MW07A-01 05/19/95
UNITS	MG/L
ENGINEERING	
PHOSPHORUS	0.01 U
TOTAL KJELDAHL NITROGEN (TKN)	0.18
ALKALINITY ANALYSIS	91
CHEMICAL OXYGEN DEMAND (COD)	20 U
TOTAL DISSOLVED SOLIDS ANALYSIS	194
TOTAL ORGANIC CARBON (TOC)	2
HETEROTROPHIC PLATE COUNT (PER ML)	950

ALKALINITY ANALYSIS

Laboratory Name:	Quanterra-Knoxville		Job Number:	3565
Contract Name:	Baker Camp Lejeune		Analysis Date:	05/19/95
Sample Matrix:	Water	······	Concentration Units:	mg/l
<u></u>	· · · · · · · · · · · · · · · · · · ·			
Client Sample ID		Lab Sample ID	Result	Qualifier
Client Sample ID Method Blank		Lab Sample ID AF4545	Result 2	Qualifier U

+ - Positive result.

CHEMICAL OXYGEN DEMAND ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3565 05/30/95	
Contract Name:	Baker Camp Lejeune	Analysis Date:		
Sample Matrix:	Water	Concentration Units:	mg/l	
			i	
Client Sample ID	Lab Sample ID	Result	Qualifier	
Client Sample ID Method Blank	Lab Sample ID AF5465	Result 20	Qualifier U	

TOTAL DISSOLVED SOLIDS ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Nu	mber:	3565		
Contract Name:	Baker Camp Lejeune	Analys	is Date:	05/16/95		
Sample Matrix:	Water	Concer	Concentration Units: mg/l		z∕l	
				-		
				-		
Client Sample ID	Lab Sa	mple ID	Result	Qualif	īer	
Client Sample ID Method Blank		mple ID 3672	Result 10	Qualif	īer	

+ - Positive result.

TOTAL KJELDAHL NITROGEN ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3565
Contract Name:	Baker Camp Lejeune	Analysis Date:	05/16/95
Sample Matrix:	Water	Concentration Units:	mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF3632	0.1	U
65-MW07A-01	AF3041	0.18	+

+

TOTAL ORGANIC CARBON ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3565
Contract Name:	Baker Camp Lejeune	Analysis Date:	05/26/95
Sample Matrix:	Water	Concentration Units:	mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF5238	1	U
65-MW07A-01	AF3043	2	+

+ - Positive result.

TOTAL PHOSPHOROUS ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3565	
Contract Name:	Baker Camp Lejeune	Analysis Date:	06/01/95	
Sample Matrix:	Water	Concentration Units:	mg/l	
Client Sample ID	Lab Sample	D Result	Onalifier	
Client Sample ID	Lab Sample	e ID Result	Qualifier	
Client Sample ID Method Blank	Lab Sample AF5490	e ID Result 0.01	Qualifier U	

TOTAL SUSPENDED SOLIDS ANALYSIS

Laboratory Name:	Quanterra-Knoxville	Job Number:	3565
Contract Name:	Baker Camp Lejeune	Analysis Date:	05/15/95
Sample Matrix:	Water	Concentration Units:	mg/l

Client Sample ID	Lab Sample ID	Result	Qualifier
Method Blank	AF3660	1	U
65-DW02-01	AF3034	4	+
65-MW02A-01	AF3051	3	+
65-MW03-01	AF3055	1	U
65-MW05A-01	AF3047	1	U
65-MW06A-01	AF3059	1	+
65-MW07A-01	AF3030	1	U

+ - Positive result.

U - Compound was analyzed for but not detected. The number is the detection limit for the sample.

-

B Microbac Laboratories, Inc.

4580 MCKNIGHT ROAD PITTSBURGH, PA 15237 (412) 931-5851

FOOD . WATER . WASTES . AIR . FUEL

CERTIFICATE OF ANALYSIS

5815 MIDD Knoxville Atin: Ja	ENVIRONMENTAL SERV. LEBROOK PIKE TN 37921 IME MCKINNEY WATER TESTING 5/12/95	DATE SAMPLED 5/0 TIME SAMPLED 09:- Sampler cus Permit No.		0 09:55
SAMPLE #	TEST PERFORMED	METHOD	RESULT	UNITS
1 65-MW07A-01 A	F3042 WATER		·	
	HETEROTROPHIC PLATE COUNT	SMEWW 9215	950	PER ML

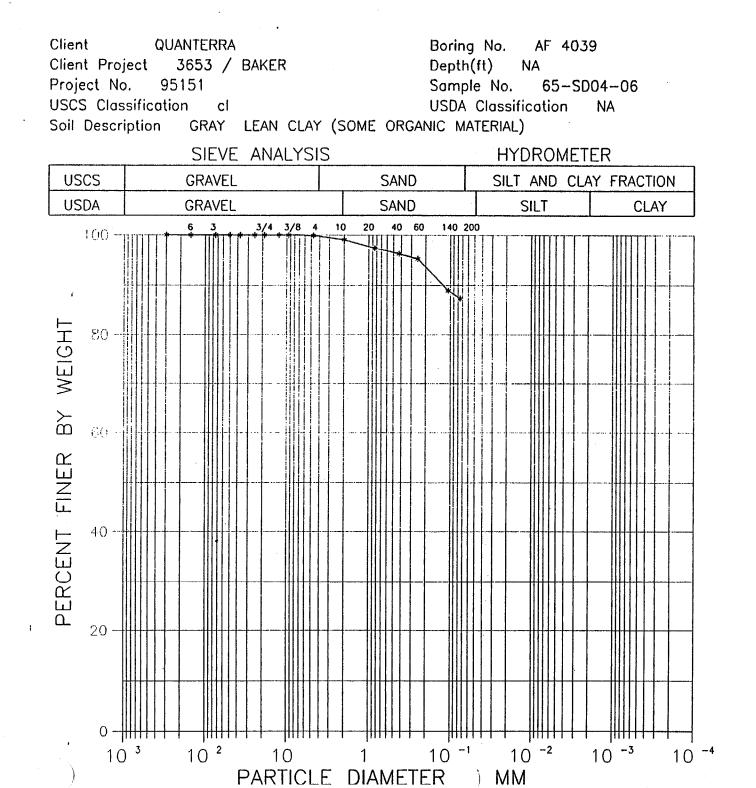
Data and other information contained on this Certificate of Analysis, and other accompanying documents, represent only the sample(s) analyzed. This information is client confidential and may not be reproduced for publication without written permission from Microbac Laboratories.

- LABORATORIES NATIONWIDE -

-

CTO 312 SITE 65 SEDIMENT

LOCATION	65-SD04-06	65-SD04-612	65-SD05-06	65-SD05-612
DATE SAMPLED	05/16/95	05/16/95	05/17/95	05/17/95
DEPTH	0-6"	0-6"	0-6"	0-6"
UNITS	MG/KG	MG/KG	MG/KG	MG/KG
ENGINEERING CARBON (TOC) IN SOLIDS	24,900	200,000	173,000	44,700


QUANTERRA

65-SD04-06

Solids, Total (TS) Carbon, Total Organic	25.7 24,900 202	% MCAWW 160.3 M mg/kg MOSA WALKLEY-		5143045 5153062
PARAMETER	REPORT		PREPARATION - ANALYSIS DATE	QC BATCH
	INORGANIC A	ANALYTICAL REPORT		
WO #: A4LVJ LAB #: C5E190037-001 MATRIX: SOLID		TIME	SAMPLED :	5/16/95 9:15 5/19/95

NOTE: DRY WEIGHT

0005003A

544 Braddock Avenue East Pittsburgh, PA 15112 Phone (412) 823-7600 Fax (412) 823-8999

WASH SIEVE ANALYSIS

ŧ

Client Client Project Project No. Boring No. Depth(ft.) Sample No. Soil Description

QUANTERRA 3653 / BAKER 95151 AF 4039 NA 65-SD04-06 GRAY LEAN CLAY (SOME ORGANIC MATERIAL)

Tested By Checked By

Date VG Date

05-21-95 5.25.95

eotechnics

Wt. of Total Sample(dry) Wt. of +#200 Sample Wt. of -#200 Sample

297.05 gm. 37.45 gm. 259.60 gm.

Sieve	Sieve Opening (mm)	Wt. of Soil Retained (gm.)	Percent Retained	Accumulated Percent Retained	Percent Finer
	(0.011)	(giii.)	<u></u>	netameu	. <u> </u>
12"	300.00	0.00	0.0	0.0	100.0
6"	150.00	0.00	0.0	0.0	100.0
3"	75.00	0.00	0.0	0.0	100.0
2"	50.00	0.00	0.0	0.0	100.0
1 1/2"	37.50	0.00	0.0	0.0	100.0
1"	25.00	0.00	0.0	0.0	100.0
3/4"	19.00	0.00	0.0	0.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0
#4	4.75	0.26	0.1	0.1	99.9
#10	2.00	2.51	0.8	0.9	99.1
#20	0.85	4.99	1.7	2.6	97.4
#40	0.425	3.38	1.1	3.8	96.2
#60	0.250	3.06	1.0	4.8	95.2
#140	0.106	18.57	6.3	11.0	89.0
#200	0.075	4.68	1.6	12.6	87.4
Pan	-	259.60	87.4	100.0	

Water Content	
Tare No.	1649
Wgt. Tare + WS.	1310.00
Wgt. Tare + DS.	397.00
Wgt. Tare	99.95
Wgt. Of Water	913.00
Wgt. Of DS.	297.05
-	

% Water

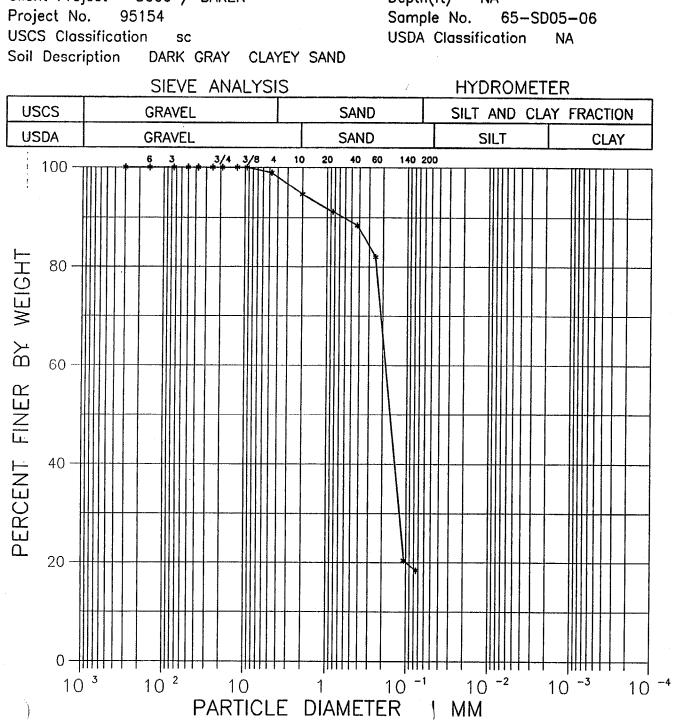
307.4

QUANTERRA

65-SD04-612

Solids, Total (TS) Carbon, Total Organic	18.0 200,000	1,390	% mg/kg	MCAWW 160.3 M Mosa Walkley-	5/23/95 6/06/95	5144031 5157101
PARAMETER	RESULT	REPORTING	UNIT	METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
	INO	RGANIC ANA	LYTICAL	REPORT		
WO #: A4M76 LAB #: C5E200017-001 MATRIX: SOLID				TIME	SAMPLED:	5/16/95 9:10 5/20/95

NOTE: DRY WEIGHT


QUANTERRA

65-SD05-06

WO #: A4M74 LAB #: C5E200015-002 MATRIX: SOLID			TIME SAMPLED:	5/17/95 11:45 5/20/95
	INORGANI	C ANALYTICAL REPORT		,
PARAMETER		RTING MIT UNIT METHOD	PREPARATION - ANALYSIS DATE	QC BATCH
Solids, Total (TS) Carbon, Total Organic	17.4 173,000 695	% MCAWW 160 mg/kg MOSA WALK		5144031 5158007

NOTE: DRY WEIGHT

0005004A

Client QUANTERRA Client Project 3666 / BAKER

Boring No. AF 4246 Depth(ft) NA

544 Braddock Avenue ٠ East Pittsburgh, PA 15112 Phone (412) 823-7600
 Fax (412) 823-8999

1

eotechnics

WASH SIEVE ANALYSIS

Client	QUANTERRA	Tested By	VG	Date	05-21-95
Client Project	3666 / BAKER	Checked By	Ocm	Date	5-3195
Project No.	95154		9		••••
Boring No.	AF 4246		/		
Depth(ft.)	NA				
Sample No.	65-SD05-06				
Soil Description	DARK GRAY	CLAYEY SAND			
Wt. of Total Sample(dry)		347.60 gm.			
Wt. of + #200 Sample		283.91 gm.			
Wt. of -#200 Sample		63.69 gm.			

•••

Sieve	Sieve Opening (mm)	Wt. of Soil Retained (gm.)	Percent Retained	Accumulated Percent Retained	Percent Finer
12"	300.00	0.00	0.0	0.0	100.0
6"	150.00	0.00	0.0	0.0	100.0
3"	75.00	0.00	0.0	0.0	100.0
2"	50.00	0.00	0.0	0.0	100.0
1 1/2"	37.50	0.00	0.0	0.0	100.0
1"	25.00	0.00	0.0	0.0	100.0
3/4"	19.00	0.00	0.0	0.0	100.0
1/2"	12.50	0.00	0.0	0.0	100.0
3/8"	9.50	0.00	0.0	0.0	100.0
#4	4.75	3.63	1.0	1.0	99.0
#10	2.00	14.81	4.3	5.3	94.7
#20	0.85	12.09	3.5	8.8	91.2
#40	0.425	9.63	2.8	11.6	88.4
#60	0.250	22.61	6.5	18.1	81.9
#140	0.106	213.86	61.5	79.6	20.4
#200	0.075	7.28	2.1	81.7	18.3
Pan	-	63.69	18.3	100.0	

Water Content	
Tare No.	1058
Wgt. Tare + WS.	1081.20
Wgt. Tare + DS.	452.60
Wgt. Tare	105.00
Wgt. Of Water	628.60
Wgt. Of DS.	347.60
-	

~ % Water

180.8

QUANTERRA

65-SD05-612

WO #: A4M73 LAB #: C5E200015-001 MATRIX: SOLID		TIME	SAMPLED:	/17/95 11:40 /20/95
	INORGANIC AN	LYTICAL REPORT		
PARAMETER	REPORTING RESULT LIMIT	UNIT METHOD	PREPARATION - ANALYSIS DATE	QC <u>BATCH</u>
Solids, Total (TS) Carbon, Total Organic	64.8 44,700 193	% MCAWW 160.3 M mg/kg MOSA WALKLEY-	-,	5144031 5158007

0005003A

NOTE: DRY WEIGHT

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
	11 U	10 U	12 U	11 U	40.11	40.1
CHLOROMETHANE BROMOMETHANE	11 U	10 U	12 U	11 U	12 U 12 U	12 J
VINYL CHLORIDE	11 U	10 U	12 U	11 U	12 U 12 U	56 U
CHLOROETHANE	11 U	10 UJ	12 U	11 U	12 U 12 U	56 U 56 U
	11 U	10 U	12 U	11 U	12 U 12 U	
METHYLENE CHLORIDE	24	10 U	12 U	11 U		56 U
ACETONE CARBON DISULFIDE	∠4 11 U	10 U	12 U 12 U		63	250 J
	11 U	10 U		11 U	12 U	56 UJ
1,1-DICHLOROETHENE			12 U	11 U	12 U	56 U
1,1-DICHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,2-DICHLOROETHENE	11 U	10 U	12 U	11 U	12 U	56 U
CHLOROFORM	11 U	10 U	12 U	11 U	12 U	6 J
1,2-DICHLOROETHANE	11 U	1 J	12 U	11 U	12 U	56 U
2-BUTANONE	11 U	10 U	3 J	11 U	1 J	56 U
1,1,1-TRICHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
CARBON TETRACHLORIDE	11 U	10 U	12 U	11 U	12 U	56 U
BROMODICHLOROMETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,2-DICHLOROPROPANE	11 U	10 U	12 U	11 U	12 U	56 U
CIS-1,3-DICHLOROPROPENE	11 U	10 U	12 U	11 U	12 U	56 U
TRICHLOROETHENE	11 U	10 U	12 U	11 U	12 U	56 U
DIBROMOCHLOROMETHANE	11 U	10 U	12 U	11 U	12 U	56 U
1,1,2-TRICHLOROETHANE	11 U	10 U	12 U	11 U	.12 U	56 U
BENZENE	11 U	10 U	12 U	11 U	12 U	56 U
TRANS-1,3-DICHLOROPROPENE	11 U	10 U	12 U	11 U	12 U	56 U
BROMOFORM	11 U	10 U	12 U	11 U	12 U	56 U
4-METHYL-2-PENTANONE	11 U	10 U	12 U	11 U	12 U	56 U
2-HEXANONE	11 U	10 U	12 U	11 U	12 U	56 U
TETRACHLOROETHENE	11 U	10 U	12 U	11 U	12 U	26 J
1,1,2,2-TETRACHLOROETHANE	11 U	10 U	12 U	11 U	12 U	56 U
TOLUENE	11 U	10 U	12 U	11 U	12 U	11 J
CHLOROBENZENE	11 U	10 U	12 U	11 U	12 U	56 U
ETHYLBENZENE	11 U	10 U	12 U	11 U	12 U	56 U
STYRENE	11 U	10 U	12 U	11 U	12 U	56 U
TOTAL XYLENES	2 J	10 U	12 U	2 J	2 J	56 U

LOCATION DATE COLLECTED DEPTH UNITS	65-SW04-01D 05/15/95 NA UG/L
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE CHLOROFORM 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE 2-BUTANONE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE BENZENE TRANS-1,3-DICHLOROPROPENE BROMOFORM AMETHYL-2-PENTANONE HEXANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CHLOROBENZENE ETHYLBENZENE STYRENE TAL XYLENES	10 U 10 U 10 U 10 U 10 U

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
PHENOL BIS(2-CHLOROETHYL)ETHER 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	370 U 370 U 370 U 370 U 370 U 370 U	10 U 10 U 10 U 10 U 10 U	380 U 380 U 380 U 380 U 380 U	370 U 370 U 370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U 390 U	9100 U 9100 U 9100 U 9100 U 9100 U 9100 U
1,2-DICHLOROBENZENE 2-METHYLPHENOL 2,2'-OXYBIS(1-CHLOROPROPANE) 4-METHYLPHENOL	370 U 370 U 370 U 370 U 370 U 370 U 370 U	10 U 10 U 10 U 10 U 10 U 10 U	380 U 380 U 380 U 380 U 380 U 380 U	370 U 370 U 370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U 390 U 390 U	9100 U 9100 U 9100 U 9100 U 9100 U
N-NITROSO-DI-N-PROPYLAMINE HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL	370 U 370 U 370 U 370 U 370 U	10 U 10 U 10 U 10 U 10 U	380 U 380 U 380 U 380 U 380 U	370 U 370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U	9100 U 9100 U 9100 U 9100 U 9100 U 9100 U
2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE NAPHTHALENE	370 U 370 U 370 U 370 U 370 U 370 U	10 U 10 U 10 U 10 U 10 U 10 U	380 U 380 U 380 U 380 U 380 U 380 U	370 U 370 U 370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U 390 U	9100 U 9100 U 9100 U 9100 U 9100 U 9100 U
4-CHLOROANILINE HEXACHLOROBUTADIENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADIENE	370 U 370 U 370 U 370 U 370 U 370 UJ	10 U 10 U 10 U 10 U 10 U 10 U	380 U 380 U 380 U 380 U 380 U 380 UJ	370 U 370 U 370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U 390 U 390 UJ	9100 U 9100 U 9100 U 9100 U 9100 U 9100 U
2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2-CHLORONAPHTHALENE 2-NITROANILINE DIMETHYL PHTHALATE	370 U 890 U 370 U 890 U 370 U	10 U 25 U 10 U 25 U 10 U	380 U 930 U 380 U 930 U 380 U	370 U 900 U 370 U 900 U 370 U	390 U 950 U 390 U 950 U 390 U	9100 U 22000 U 9100 U 22000 U 9100 U
ACENAPHTHYLENE 2,6-DINITROTOLUENE 3-NITROANILINE ACENAPHTHENE 2,4-DINITROPHENOL	370 U 370 U 890 U 370 U 890 U	10 U 10 U 25 U 10 U 25 UJ	380 U 380 U 930 U 380 U 930 U	370 U 370 U 900 U 370 U 900 U	390 U 390 U 950 U 390 U 950 U	9100 U 9100 U 22000 U 9100 U 22000 U

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' UG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' UG/KG	65-SB07-00D 04/08/95 0-1' UG/KG	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG
4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE DIETHYL PHTHALATE 4-CHLOROPHENYLPHENYL ETHER FLUORENE 4-NITROANILINE 4,6-DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE 4-BROMOPHENYL PHENYL ETHER HEXACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE PENTACHLOROBENZENE DI-N-BUTYL PHTHALATE FLUORANTHRENE ANTHRACENE CARBAZOLE DI-N-BUTYL PHTHALATE FLUORANTHENE PYRENE BUTYL BENZYL PHTHALATE 3,3-DICHLOROBENZIDINE BENZO(A)ANTHRACENE CHRYSENE BIS(2-ETHYLHEXYL)PHTHALATE DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(A)PYRENE	890 U 370 U 370 U 370 U 370 U 370 U 890 U 370 U	25 U 10 U 10 U 10 U 10 U 10 U 10 U 25 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	930 U 380 U 380 U 380 U 380 U 930 U 930 U 930 U 380 U	900 U 370 U 370 U 370 U 370 U 370 U 900 U 900 U 370 U	950 U 390 U 390 U 390 U 390 U 390 U 950 U 390 U	22000 U 9100 U 9100 U 9100 U 9100 U 9100 U 22000 U 22000 U 22000 U 9100 U
INDENO(1,2,3-CD)PYRENE DIBENZO(A,H)ANTHRACENE BENZO(G,H,I)PERYLENE	370 U 370 U 370 U 370 U	10 U 10 U 10 U	380 U 380 U 380 U	370 U 370 U 370 U 370 U	390 U 390 U 390 U 390 U	9100 U 9100 U 9100 U 9100 U

	00-5W04-01D
	05/15/95
DEPTH	NA
UNITS	UG/L
PHENOL	10 U
BIS(2-CHLOROETHYL)ETHER	10 U
2-CHLOROPHENOL	10 U
1,3-DICHLOROBENZENE	10 U
1,4-DICHLOROBENZENE	10 U
1,2-DICHLOROBENZENE	10 U
2-METHYLPHENOL	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U
4-METHYLPHENOL	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U
HEXACHLOROETHANE	10 U
NITROBENZENE	10 U
ISOPHORONE	10 U
2-NITROPHENOL	10 U
2,4-DIMETHYLPHENOL	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U
2,4-DICHLOROPHENOL	10 U
1,2,4-TRICHLOROBENZENE	10 U
NAPHTHALENE	10 U
4-CHLOROANILINE	10 U
HEXACHLOROBUTADIENE	10 U
4-CHLORO-3-METHYLPHENOL	10 U
2-METHYLNAPHTHALENE	10 U
HEXACHLOROCYCLOPENTADIENE	10 U
2,4,6-TRICHLOROPHENOL	10 U
2,4,5-TRICHLOROPHENOL	25 U
2-CHLORONAPHTHALENE	10 U
2-NITROANILINE	25 U
DIMETHYL PHTHALATE	10 U
ACENAPHTHYLENE	10 U
2,6-DINITROTOLUENE	10 U
3-NITROANILINE	25 U
ACENAPHTHENE	10 U
2,4-DINITROPHENOL	25 U

65-SW04-01D

LOCATION

LOCATION	65-SW04-01D
DATE COLLECTED	05/15/95
DEPTH	NA
UNITS	UG/L

4-NITROPHENOL	25 U
DIBENZOFURAN	10 U
2,4-DINITROTOLUENE	10 U
DIETHYL PHTHALATE	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U
FLUORENE	10 U
4-NITROANILINE	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U
N-NITROSODIPHENYLAMINE	10 U
4-BROMOPHENYL PHENYL ETHER	10 U
HEXACHLOROBENZENE	10 U
PENTACHLOROPHENOL	25 U
PHENANTHRENE	10 U
ANTHRACENE	10 U
CARBAZOLE	10 U
DI-N-BUTYL PHTHALATE	10 U
FLUORANTHENE	10 U
PYRENE	10 U
BUTYL BENZYL PHTHALATE	10 U
3,3'-DICHLOROBENZIDINE	10 U
BENZO(A)ANTHRACENE	10 U
CHRYSENE	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	7 J
DI-N-OCTYL PHTHALATE	10 U
BENZO(B)FLUORANTHENE	10 U
BENZO(K)FLUORANTHENE	10 U
BENZO(A)PYRENE	10 U
INDENO(1,2,3-CD)PYRENE	10 U
DIBENZO(A,H)ANTHRACENE	10 U
BENZO(G,H,I)PERYLENE	10 U

	65-DW01-04D 04/10/95	65-MW01A-01D 05/08/95	65-MW06A-00D 04/08/95	65-SB07-00D 04/08/95	65-SB07-00DR 04/08/95
DATE COLLECTED	04/10/95 7-9'		04/08/95		
DEPTH	UG/KG	NA		0-1'	0-1'
UNITS	06/KG	UG/L	UG/KG	UG/KG	UG/KG
ALPHA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
BETA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
DELTA-BHC	1.9 U	0.05 U	2 U	1.9 U	4.3 R
GAMMA-BHC(LINDANE)	1.9 U	0.05 U	2 U	1.9 U	4.3 R
HEPTACHLOR	1.9 U	0.05 U	2 U	1.9 U	4.3 R
ALDRIN	1.9 U	0.05 U	2 U	1.9 U	4.3 R
HEPTACHLOR EPOXIDE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
ENDOSULFAN I	1.9 U	0.05 U	2 U	1.9 U	4.3 R
DIELDRIN	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDE	3.7 U	0.1 U	3.8 U	36 J	77 D
ENDRIN	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ENDOSULFAN II	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDD	3.7 UJ	0.1 U	3.8 UJ	3.8 UJ	8.4 R
ENDOSULFAN SULFATE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
4,4'-DDT	3.7 U	0.1 U	3.8 U	29 U	53 R
METHOXYCHLOR	19 U	0.5 U	20 U	19 U	43 R
ENDRIN KETONE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ENDRIN ALDEHYDE	3.7 U	0.1 U	3.8 U	3.8 U	8.4 R
ALPHA CHLORDANE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
GAMMA CHLORDANE	1.9 U	0.05 U	2 U	1.9 U	4.3 R
TOXAPHENE	190 U	5 U	200 U	190 U	430 R
PCB-1016	37 U	1 U	38 U	38 U	84 R
PCB-1221	75 U	2 U	78 U	76 U	170 R
PCB-1232	37 U	1 U	. 38 U	38 U	84 R
PCB-1242	37 U	1 U	38 U	38 U	84 R
PCB-1248	37 U	1 U	38 U	38 U	84 R
PCB-1254	37 U	1 U	38 U	38 U	84 R
PCB-1260	37 U	1 U	38 U	38 U	84 R
					•

.

LOCATION DATE COLLECTED DEPTH UNITS	65-SB11-04D 04/08/95 7-9' UG/KG	65-SD04-06D 05/16/95 0-6" UG/KG	65-SW04-01D 05/15/95 NA UG/L
ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4'-DDE ENDRIN ENDOSULFAN II 4,4'-DDD ENDOSULFAN SULFATE 4,4'-DDT METHOXYCHLOR ENDRIN KETONE ENDRIN KETONE ENDRIN ALDEHYDE ALPHA CHLORDANE GAMMA CHLORDANE TOXAPHENE PCB-1016 PCB-1221 PCB-1232 PCB-1242	2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ 2 UJ	9.1 U 9.1 U 9.1 U 9.1 U 9.1 U 9.1 U 9.1 U 9.1 U 9.1 U 18 U 180 U	0.05 UJ 0.05 UJ 0.05 UJ 0.05 UJ 0.05 UJ 0.05 UJ 0.05 UJ 0.05 UJ 0.1 UJ 0.5 UJ 0.5 UJ 0.5 UJ 0.1 UJ
PCB-1248 PCB-1254 PCB-1260	39 UJ 39 UJ 39 UJ	180 U 180 U 180 U 180 U	1 UJ 1 UJ 1 UJ 1 UJ

LOCATION DATE COLLECTED DEPTH UNITS	65-DW01-04D 04/10/95 7-9' MG/KG	65-MW01A-01D 05/08/95 NA UG/L	65-MW06A-00D 04/08/95 0-1' MG/KG	65-SB07-00D 04/08/95 0-1' MG/KG	65-SB11-04D 04/08/95 7-9' MG/KG	65-SD04-06D 05/16/95 0-6" MG/KG
ANALYTES	0500	40.11	4700	4000	0040	00500 1
ALUMINUM	8520	40 U	1760	1230	9310	60500 J
ANTIMONY	11.4 U	50 U	11.9 U	11.4 U	12 U	55.2 UJ
ARSENIC	2.3 U	10 U	2.4 U	2.3 U	2.4 U	11 U
BARIUM	14.4	57.6	4.9	5.2	15.2	170
BERYLLIUM	0.23 U	1 U	0.24 U	0.23 U	0.24 U	1.1 U
CADMIUM	1.1 U	5 U	1.2 U	1.1 U	1.2 U	5.5 U
CALCIUM	371	152000	286	120	554	7290
CHROMIUM	10.5	10	3.5	2.3 U	10.5	73.6 J
COBALT	4.6 UJ	20 U	4.8 UJ	4.6 UJ	4.8 UJ	37.7
COPPER	4.2	10 U	7.2	4.1	2.4 U	159 J
IRON	2960 J	261	2090 J	707 J	2130 J	23200 J
LEAD	18.3 J	3 U	11.6 J	6.8 J	3.5 J	276 J
MAGNESIUM	296	17000	56.9	45.1	408	1910
MANGANESE	15 J	181	8.2 J	5.6 J	4.6 J	215 J
MERCURY	0.11 U	0.2 U	0.12 U	0.11 U	0.12 U	0.55 U
NICKEL	4.6 U	20 U	4.8 U	4.6 U	4.8 U	22.1 U
POTASSIUM	228 U	5610	238 U	229 U	375	2140
SELENIUM	1.1 U	5 U	1.2 U	1.1 U	1.2 U	5.5 U
SILVER	1.1 U	5 U	1.2 U	1.1 U	1.2 U	5.5 U
SODIUM	46.2	11300	47.6 U	45.8 U	48.1 U	257
THALLIUM	2.3 U	10 U	2.4 U	2.3 U	2.4 U	11 U
VANADIUM	15.4	10 U	2.4 U	2.3 U	7.5	66.9
ZINC	32 J	10.7	68 J	7.6 J	6.9 J	420 J

FIELD DUPLICATE SUMMARY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

~

LOCATION DATE COLLECTED DEPTH UNITS	65-SW04-01D 05/15/95 NA UG/L
ANALYTES	
ALUMINUM	22600
ANTIMONY	50 U
ARSENIC	10 U
BARIUM	63.9
BERYLLIUM	1 U
CADMIUM	5 U
CALCIUM	12600
CHROMIUM	25.8
COBALT	20 U
COPPER	54
IRON	7830
LEAD	50.5
MAGNESIUM	2030
MANGANESE	91.2
MERCURY	0.2 U
NICKEL	20 U
POTASSIUM	2890
SELENIUM	5 U
SILVER	5 U
SODIUM	3430
THALLIUM	10 U
VANADIUM	25.8
ZINC	128

FIELD DUPLICATE SUMMARY FILTERED GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH	5-MW01AF-01D 05/08/95 NA
ANALYTES (ug/L) ALUMINUM ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IRON LEAD MAGNESIUM MANGANESE MERCURY NICKEL POTASSIUM SELENIUM SILVER SODIUM THALLIUM VANADIUM	40 U 50 U 10 U 62.8 1 U 5 U 167000 10.4 20 U 10 U 202 3 U 18700 198 0.2 U 20 U 6840 5 U 5 U 12300 10 U 10 U
ZINC	5.1 U

APPENDIX Q FREQUENCY OF DETECTION SUMMARY, QA/QC SAMPLES

LOCATION	65-TB-01	65-TB-02	65-TB-03
DATE COLLECTED	04/10/95	04/11/95	05/16/95
VOLATILES (ug/L)			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	1 J	1 J
ACETONE	10 U	8 J	3 J
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	2 J
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	10 U	2 J	1 J
2-BUTANONE	10 U	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	2 J
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	4 J	2 J
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

ICL ORGANICS						
LOCATION DATE COLLECTED		MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	10 U	ND	ND		0/3
METHYLENE CHLORIDE	10 U	10 U	1 J	1 J	65-TB-03	2/3
ACETONE	10 U	10 U	3 J	8 J	65-TB-02	2/3
CARBON DISULFIDE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHENE	10 U	10 U	2 J	2 J	65-TB-03	1/3
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHANE	10 U	10 U	1 J	2 J	65-TB-02	2/3
2-BUTANONE	10 U	10 U	ND	ND		0/3
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/3
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 U	2 J	2 J	65-TB-03	1/3
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U	10 U	ND	ND		0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	2 J	4 J	65-TB-02	2/3
CHLOROBENZENE	10 U	10 U	ND	ND		0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND		0/3
TOTAL XYLENES	10 U	10 U	ND	ND		0/3

LOCATION	65-RB-01	65-RB-03	65-RB-23
DATE COLLECTED	04/08/95	04/10/95	05/16/95
VOLATILES (ug/L)	40.11	40.11	
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 U	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	1 J	1 J	10 U
ACETONE	35	93	44
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	10 U
1,2-DICHLOROETHANE	1 J	1 J	1 J
2-BUTANONE	10 U	7 J	10 U
1,1,1-TRICHLOROETHANE	10 U	. 10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	10 U
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	10 U
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
DATE COLLECTED		NONDETEOTED	DETECTED	DEICOILD	DEILOILD	DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	10 U	ND	ND		0/3
METHYLENE CHLORIDE	10 U	10 U	1 J	1 J	65-RB-03	2/3
ACETONE	NA	NA	35	93	65-RB-03	3/3
CARBON DISULFIDE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHANE	NA	NA	1 J	1 J	65-RB-23	3/3
2-BUTANONE	10 U	10 U	7 J	7 J	65-RB-03	1/3
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/3
BROMODICHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 Ú	ND	ND		0/3
DIBROMOCHLOROMETHANE	10 U	10 U	ND	ND		0/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U	10 U	ND	ND		0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND		0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	ND	ND		0/3
CHLOROBENZENE	10 U	10 U	ND	ND		0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND	1	0/3
TOTAL XYLENES	10 U	10 U	ND	ND		0/3

LOCATION	65-RB-01	65-RB-03	65-RB-23
DATE COLLECTED	04/08/95	04/10/95	05/16/95
SEMIVOLATILES (ug/L)			
PHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U
1,3-DICHLOROBENZENE	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U
4-METHYLPHENOL	10 U	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U
NITROBENZENE	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U
HEXACHLOROBUTADIENE	10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 R
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U
2-NITROANILINE	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 U	25 R
4-NITROPHENOL	25 U	25 U	25 U
DIBENZOFURAN	10 U	10 U	10 U
			· · · -

LOCATION DATE COLLECTED	65-RB-01 04/08/95	65-RB-03 04/10/95	65-RB-23 05/16/95
SEMIVOLATILES (ug/L) cont.			
2,4-DINITROTOLUENE	10 U	10 U	10 U
DIETHYL PHTHALATE	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	10 U
FLUORENE	10 U	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	10 U	10 U	10 U
FLUORANTHENE	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	10 U
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U

			ICL ORGANICS			
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/3
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
2-METHYLPHENOL	10 U	10 U	ND	ND		0/3
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/3
4-METHYLPHENOL	10 U	10 U	ND	ND		0/3
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/3
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/3
NITROBENZENE	10 U	10 U	ND	ND		0/3
ISOPHORONE	10 U	10 U	ND	ND		0/3
2-NITROPHENOL	10 U	10 U	ND	ND		0/3
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/3
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/3
NAPHTHALENE	10 U	10 U	ND	ND		0/3
4-CHLOROANILINE	10 U	10 U	ND	ND		0/3
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/3
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/3
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/3
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/2
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/3
2,4,5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/3
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/3
2-NITROANILINE	25 U	25 U	ND	ND		0/3
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/3
2,6-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
3-NITROANILINE	25 U	25 U	ND	ND		0/3
ACENAPHTHENE	10 U	10 U	ND	ND		0/3
2,4-DINITROPHENOL	25 U	25 U	ND	ND		0/2
4-NITROPHENOL	25 U	25 U	ND	ND		0/3
DIBENZOFURAN	10 U	10 U	ND	ND		0/3

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.						
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/3
FLUORENE	10 U	10 U	ND	ND		0/3
4-NITROANILINE	25 U	25 U	ND	ND		0/3
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/3
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/3
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/3
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/3
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/3
PHENANTHRENE	10 U	10 U	ND	ND		0/3
ANTHRACENE	10 U	10 U	ND	ND		0/3
CARBAZOLE	10 U	10 U	ND	ND		0/3
DI-N-BUTYL PHTHALATE	10 U	10 U	ND	ND		0/3
FLUORANTHENE	10 U	10 U	ND	ND		0/3
PYRENE	10 U	10 U	ND	ND		0/3
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/3
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/3
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND		0/3
CHRYSENE	10 U	10 U	ND	ND		0/3
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	ND	ND		0/3
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/3
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/3
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/3
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/3
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/3

LOCATION DATE COLLECTED	65-RB-01 04/08/95	65-RB-03 04/10/95	65-RB-23 05/16/95
PESTICIDE/PCB (ug/L)			
ALPHA-BHC	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0.05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0.1 U
ENDRIN	0.1 U	0.1 U	0.1 U
ENDOSULFAN II	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 UJ	0.1 UJ	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.24	0.3	0.1 U
METHOXYCHLOR	0.5 U	0.5 U	0.5 UJ
ENDRIN KETONE	0.1 U	0.1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 U
PCB-1221	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U
PCB-1242	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U
PCB-1254	1 U	1 U	1 U
PCB-1260	1 U	1 U	1 U

.

LOCATION DATE COLLECTED	MINIMUM	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCB (ug/L)						
ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/3
BETA-BHC	0.05 U	0.05 U	ND	ND		0/3
DELTA-BHC	0.05 U	0.05 U	ND	ND		0/3
GAMMA-BHC(LINDANE)	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR	0.05 U	0.05 U	ND	ND		0/3
ALDRIN	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	ND	ND		0/3
ENDOSULFAN I	0.05 U	0.05 U	ND	ND		0/3
DIELDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN	0.1 U	0.1 U	ND	ND		0/3
ENDOSULFAN II	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDD	0.1 UJ	0.1 UJ	ND	ND		0/3
ENDOSULFAN SULFATE	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDT	0.1 U	0.1 U	0.24	0.3	65-RB-03	2/3
METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/3
ENDRIN KETONE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/3
ALPHA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
GAMMA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
TOXAPHENE	. 5 U	5 U	ND	ND		0/3
PCB-1016	1 U	1 U	ND	ND		0/3
PCB-1221	2 U	2 U	ND	ND		0/3
PCB-1232	1 U	1 U	ND	ND		0/3
PCB-1242	1 U	1 U	ND	ND		0/3
PCB-1248	1 U	1 U	ND	ND		0/3
PCB-1254	1 U	1 U ·	ND	ND		0/3
PCB-1260	1 U	1 U	ND	ND		0/3

LOCATION DATE COLLECTED	65-RB-01 04/08/95	65-RB-03 04/10/95	65-RB-23 05/16/95
DATE COLLEGIED	04/00/00	07/10/30	03/10/93
ANALYTES (ug/L)			
ALUMINUM	40 U	40 U	65.2
ANTIMONY	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U
BARIUM	2.5	2.5	2 U
BERYLLIUM	1.0	1 U	1 U
CADMIUM	5 U	5 U	5 U
CALCIUM	98.8	110	598
CHROMIUM	10 U	10 U	10 U
COBALT	20 UJ	20 UJ	20 U
COPPER	10 U	10 U	10 U
IRON	10 U	10 U	58.9 U
LEAD	3 U	3 U	3 U
MAGNESIUM	50 U	50 U	120
MANGANESE	2 U	2 U	2 U
MERCURY	0.2 U	0.2 U	0.2 U
NICKEL	20 U	20 U	20 U
POTASSIUM	1000 U	1000 U	1000 U
SELENIUM	5 U	5 U	5 U
SILVER	5 U	5 U	5 U
SODIUM	200 U	200 U	290
THALLIUM	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U
ZINC	13.8	13	11.7 U

65RBINO.WK4 10/23/95

LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	LOCATION OF MAXIMUM	FREQUENCY OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	65.2	65.2	65-RB-23	1/3
ANTIMONY	50 U	50 U	ND	ND		0/3
ARSENIC	10 U	10 U	ND	ND		0/3
BARIUM	2 U	2 U	2.5	2.5	65-RB-03	2/3
BERYLLIUM	1 U	1 U	ND	ND		0/3
CADMIUM	5 U	5 U	ND	ND		0/3
CALCIUM	NA	NA	98.8	598	65-RB-23	3/3
CHROMIUM	10 U	10 U	ND	ND		0/3
COBALT	20 UJ	20 UJ	ND	ND		0/3
COPPER	10 U	10 U	ND	ND		0/3
IRON	10 U	58.9 U	ND	ND		0/3
LEAD	3 U	3 U	ND	ND		0/3
MAGNESIUM	50 U	50 U	120	120	65-RB-23	1/3
MANGANESE	2 U	2 U	ND	ND		0/3
MERCURY	0.2 U	0.2 U	ND	ND		0/3
NICKEL	20 U	20 U	ND	ND		0/3
POTASSIUM	1000 U	1000 U	ND	ND		0/3
SELENIUM	5 U	5 U	ND	ND		0/3
SILVER	5 U	5 U	ND	ND		0/3
SODIUM	200 U	200 U	290	290	65-RB-23	1/3
THALLIUM	10 U	10 U	ND	ND		0/3
VANADIUM	10 U	10 U	ND	ND		0/3
ZINC	11.7 U	11.7 U	13	13.8	65-RB-01	2/3

LOCATION	73-FB-01	73-FB-02	73-FB-03
DATE COLLECTED	04/20/95	04/20/95	04/20/95
VOLATILES (ug/L)			
CHLOROMETHANE	10 U	10 U	10 U
BROMOMETHANE	10 U	10 U	10 U
VINYL CHLORIDE	10 0	10 U	10 U
CHLOROETHANE	10 U	10 U	10 U
METHYLENE CHLORIDE	10 U	16	10 U
ACETONE	12	56	7 J
CARBON DISULFIDE	10 U	10 U	10 U
1,1-DICHLOROETHENE	10 U	10 U	10 U
1,1-DICHLOROETHANE	10 U	10 U	10 U
1,2-DICHLOROETHENE	10 U	10 U	10 U
CHLOROFORM	10 U	10 U	30
1,2-DICHLOROETHANE	10 U	10 U	10 U
2-BUTANONE	10 U	10 U	10 U
1,1,1-TRICHLOROETHANE	10 U	10 U	10 U
CARBON TETRACHLORIDE	10 U	10 U	10 U
BROMODICHLOROMETHANE	10 U	10 U	18
1,2-DICHLOROPROPANE	10 U	10 U	10 U
CIS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
TRICHLOROETHENE	10 U	10 U	10 U
DIBROMOCHLOROMETHANE	10 U	10 U	6 J
1,1,2-TRICHLOROETHANE	10 U	10 U	10 U
BENZENE	10 U	10 U	10 U
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	10 U
BROMOFORM	10 U	10 U	10 U
4-METHYL-2-PENTANONE	10 U	10 U	10 U
2-HEXANONE	10 U	10 U	10 U
TETRACHLOROETHENE	10 U	10 U	10 U
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	10 U
TOLUENE	10 U	10 U	10 U
CHLOROBENZENE	10 U	10 U	10 U
ETHYLBENZENE	10 U	10 U	10 U
STYRENE	10 U	10 U	10 U
TOTAL XYLENES	10 U	10 U	10 U

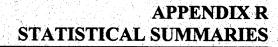
LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
VOLATILES (ug/L)						
CHLOROMETHANE	10 U	10 U	ND	ND		0/3
BROMOMETHANE	10 U	10 U	ND	ND		0/3
VINYL CHLORIDE	10 U	10 U	ND	ND		0/3
CHLOROETHANE	10 U	10 U	ND	ND		0/3
METHYLENE CHLORIDE	<u>1</u> 0 U	10 U	16	16	73-FB-02	1/3
ACETONE	NA	NA	7 J	56	73-FB-02	3/3
CARBON DISULFIDE	10 U	10 U	ND	ND		, 0/3
1,1-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROETHENE	10 U	10 U	ND	ND		0/3
CHLOROFORM	10 U	10 U	30	30	73-FB-03	1/3
1,2-DICHLOROETHANE	10 U	10 U	ND	ND		0/3
2-BUTANONE	10 U	10 U	ND	ND		0/3
1,1,1-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
CARBON TETRACHLORIDE	10 U	10 U	ND	ND		0/3
BROMODICHLOROMETHANE	10 U	10 U	18	18	73-FB-03	1/3
1,2-DICHLOROPROPANE	10 U	10 U	ND	ND		0/3
CIS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
TRICHLOROETHENE	10 U	10 U	ND	ND		0/3
DIBROMOCHLOROMETHANE	10 U	10 U	6 J	6 J	73-FB-03	1/3
1,1,2-TRICHLOROETHANE	10 U	10 U	ND	ND		0/3
BENZENE	10 U	10 U	ND	ND		0/3
TRANS-1,3-DICHLOROPROPENE	10 U	10 U	ND	ND		0/3
BROMOFORM	10 U	10 U	ND	ND		0/3
4-METHYL-2-PENTANONE	10 U	10 U	ND	ND	ч.	0/3
2-HEXANONE	10 U	10 U	ND	ND		0/3
TETRACHLOROETHENE	10 U	10 U	ND	ND		0/3
1,1,2,2-TETRACHLOROETHANE	10 U	10 U	ND	ND		0/3
TOLUENE	10 U	10 U	ND	ND		0/3
CHLOROBENZENE	10 U	10 U	ND	ND		0/3
ETHYLBENZENE	10 U	10 U	ND	ND		0/3
STYRENE	10 U	10 U	ND	ND		0/3
TOTAL XYLENES	10 U	10 U	ND	ND		0/3

	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
SEMIVOLATILES (ug/L)			
PHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	10 U
2-CHLOROPHENOL	10 U	10 U	10 U
1.3-DICHLOROBENZENE	10 U	10 U	10 U
1,4-DICHLOROBENZENE	10 U	10 U	10 U
1,2-DICHLOROBENZENE	10 U	10 U	10 U
2-METHYLPHENOL	10 U	10 U	10 U
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	10 U
4-METHYLPHENOL	10 U	10 U	10 U
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	10 U
HEXACHLOROETHANE	10 U	10 U	10 U
NITROBENZENE	10 U	10 U	10 U
ISOPHORONE	10 U	10 U	10 U
2-NITROPHENOL	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	10 U	10 U	10 U
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	10 U
2,4-DICHLOROPHENOL	10 U	10 U	10 U
1,2,4-TRICHLOROBENZENE	10 U	10 U	10 U
NAPHTHALENE	10 U	10 U	10 U
4-CHLOROANILINE	10 U	10 U	10 U
HEXACHLOROBUTADIENE	10 U	10 U	10 U
4-CHLORO-3-METHYLPHENOL	10 U	10 U	10 U
2-METHYLNAPHTHALENE	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	10 U
2,4,6-TRICHLOROPHENOL	10 U	10 U	10 U
2,4,5-TRICHLOROPHENOL	25 U	25 U	25 U
2-CHLORONAPHTHALENE	10 U	10 U	10 U
2-NITROANILINE	25 U	25 U	25 U
DIMETHYL PHTHALATE	10 U	10 U	10 U
ACENAPHTHYLENE	10 U	10 U	10 U
2,6-DINITROTOLUENE	10 U	10 U	10 U
3-NITROANILINE	25 U	25 U	25 U
ACENAPHTHENE	10 U	10 U	10 U
2,4-DINITROPHENOL	25 U	25 U	25 U
4-NITROPHENOL	25 U	25 U	25 U

LOCATION DATE COLLECTED	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
SEMIVOLATILES (ug/L) cont.			
	10 U	10 U	10 U
2,4-DINITROTOLUENE	10 U	10 U	10 U
	10 U	10 U	10 U
4-CHLOROPHENYLPHENYL ETHER FLUORENE	10 U	10 U	10 U
	10 U	10 U	10 U
4-NITROANILINE	25 U	25 U	25 U
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	25 U
N-NITROSODIPHENYLAMINE	10 U	10 U	10 U
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	10 U
HEXACHLOROBENZENE	10 U	10 U	10 U
PENTACHLOROPHENOL	25 U	25 U	25 U
PHENANTHRENE	10 U	10 U	10 U
ANTHRACENE	10 U	10 U	10 U
CARBAZOLE	10 U	10 U	10 U
DI-N-BUTYL PHTHALATE	1 J	10 U	10 U
FLUORANTHENE	10 U	10 U	10 U
PYRENE	10 U	10 U	10 U
BUTYL BENZYL PHTHALATE	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	10 U	10 [°] U	10 U
BENZO(A)ANTHRACENE	10 U	10 U	10 U
CHRYSENE	10 U	10 U	10 U
BIS(2-ETHYLHEXYL)PHTHALATE	2 J	10 U	10 U
DI-N-OCTYL PHTHALATE	10 U	10 U	10 U
BENZO(B)FLUORANTHENE	10 U	10 U	10 U
BENZO(K)FLUORANTHENE	10 U	10 U	10 U
BENZO(A)PYRENE	10 U	10 U	10 U
INDENO(1,2,3-CD)PYRENE	10 U	10 U	10 U
DIBENZO(A,H)ANTHRACENE	10 U	10 U	10 U
BENZO(G,H,I)PERYLENE	10 U	10 U	10 U
	10 0	10 0	10 0

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L)						
PHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHYL)ETHER	10 U	10 U	ND	ND		0/3
2-CHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,3-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,4-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
1,2-DICHLOROBENZENE	10 U	10 U	ND	ND		0/3
2-METHYLPHENOL	10 U	10 U	ND	ND		0/3
2,2'-OXYBIS(1-CHLOROPROPANE)	10 U	10 U	ND	ND		0/3
4-METHYLPHENOL	10 U	10 U	ND	ND		0/3
N-NITROSO-DI-N-PROPYLAMINE	10 U	10 U	ND	ND		0/3
HEXACHLOROETHANE	10 U	10 U	ND	ND		0/3
NITROBENZENE	10 U	10 U	ND	ND		0/3
ISOPHORONE	10 U	10 U	ND	ND		0/3
2-NITROPHENOL	10 U	10 U	ND	ND		0/3
2,4-DIMETHYLPHENOL	10 U	10 U	ND	ND		0/3
BIS(2-CHLOROETHOXY)METHANE	10 U	10 U	ND	ND		0/3
2,4-DICHLOROPHENOL	10 U	10 U	ND	ND		0/3
1,2,4-TRICHLOROBENZENE	10 U	10 U	ND	ND		0/3
NAPHTHALENE	10 U	10 U	ND	ND		0/3
4-CHLOROANILINE	10 U	10 U	ND	ND		0/3
HEXACHLOROBUTADIENE	10 U	10 U	ND	ND		0/3
4-CHLORO-3-METHYLPHENOL	10 U	10 U	ND	ND		0/3
2-METHYLNAPHTHALENE	10 U	10 U	ND	ND		0/3
HEXACHLOROCYCLOPENTADIENE	10 U	10 U	ND	ND		0/3
2,4,6-TRICHLOROPHENOL	10 U	10 U	ND	ND		0/3
2.4.5-TRICHLOROPHENOL	25 U	25 U	ND	ND		0/3
2-CHLORONAPHTHALENE	10 U	10 U	ND	ND		0/3
2-NITROANILINE	25 U	25 U	ND	ND		0/3
DIMETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
ACENAPHTHYLENE	10 U	10 U	ND	ND		0/3
2.6-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
3-NITROANILINE	25 U	25 U	ND	ND		0/3
ACENAPHTHENE	10 U	10 U	ND	ND		0/3
2,4-DINITROPHENOL	25 U	25 U	ND	ND		0/3
4-NITROPHENOL	25 U	25 U	ND	ND		0/3

LOCATION DATE COLLECTED	MINIMUM NONDETECTED	MAXIMUM NONDETECTED	MINIMUM DETECTED	MAXIMUM	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
SEMIVOLATILES (ug/L) cont.						
DIBENZOFURAN	10 U	10 U	ND	ND		0/3
2,4-DINITROTOLUENE	10 U	10 U	ND	ND		0/3
DIETHYL PHTHALATE	10 U	10 U	ND	ND		0/3
4-CHLOROPHENYLPHENYL ETHER	10 U	10 U	ND	ND		0/3
FLUORENE	10 U	10 U	ND	ND		0/3
4-NITROANILINE	25 U	25 U	ND	ND		0/3
4,6-DINITRO-2-METHYLPHENOL	25 U	25 U	ND	ND		0/3
N-NITROSODIPHENYLAMINE	10 U	10 U	ND	ND		0/3
4-BROMOPHENYL PHENYL ETHER	10 U	10 U	ND	ND		0/3
HEXACHLOROBENZENE	10 U	10 U	ND	ND		0/3
PENTACHLOROPHENOL	25 U	25 U	ND	ND		0/3
PHENANTHRENE	10 U	10 U	ND	ND		0/3
ANTHRACENE	10 U	10 U	ND	ND		0/3
CARBAZOLE	10 U	10 U	ND	ND		0/3
DI-N-BUTYL PHTHALATE	10 U	10 U	1 J	1 J	73-FB-01	1/3
FLUORANTHENE	10 U	10 U	ND	ND		0/3
PYRENE	10 U	10 U	ND	ND		0/3
BUTYL BENZYL PHTHALATE	10 U	10 U	ND	ND		0/3
3,3'-DICHLOROBENZIDINE	10 U	10 U	ND	ND		0/3
BENZO(A)ANTHRACENE	10 U	10 U	ND	ND ·		0/3
CHRYSENE	10 U	10 U	ND	ND		0/3
BIS(2-ETHYLHEXYL)PHTHALATE	10 U	10 U	2 J	2 J	73-FB-01	1/3
DI-N-OCTYL PHTHALATE	10 U	10 U	ND	ND		0/3
BENZO(B)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(K)FLUORANTHENE	10 U	10 U	ND	ND		0/3
BENZO(A)PYRENE	10 U	10 U	ND	ND		0/3
INDENO(1,2,3-CD)PYRENE	10 U	10 U	ND	ND		0/3
DIBENZO(A,H)ANTHRACENE	10 U	10 U	ND	ND		0/3
BENZO(G,H,I)PERYLENE	10 U	10 U	ND	ND		0/3


LOCATION DATE COLLECTED	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
PESTICIDE/PCBS (ug/L)			
ALPHA-BHC	0.05 U	0.05 U	0.05 U
BETA-BHC	0.05 U	0.05 U	0.05 U
DELTA-BHC	0.05 U	0.05 U	0.05 U
HEPTACHLOR	0.05 U	0.05 U	0.05 U
ALDRIN	0.05 U	0.05 U	0.05 U
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	0.05 U
ENDOSULFAN I	0.05 U	0.05 U	0.05 U
DIELDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDE	0.1 U	0.1 U	0.1 U
ENDRIN	0.1 U	0.1 U	0.1 U
4,4'-DDD	0.1 U	0.1 U	0.1 U
ENDOSULFAN SULFATE	0.1 U	0.1 U	0.1 U
4,4'-DDT	0.1 U	0.1 U	0.1 U
METHOXYCHLOR	0.5 U	0.5 U	0.5 U
ENDRIN KETONE	0.1 U	0.1 U	0.1 U
ENDRIN ALDEHYDE	0.1 U	0.1 U	0.1 U
ALPHA CHLORDANE	0.05 U	0.05 U	0.05 U
GAMMA CHLORDANE	0.05 U	0.05 U	0.05 U
TOXAPHENE	5 U	5 U	5 U
PCB-1016	1 U	1 U	1 U
PCB-1221	2 U	2 U	2 U
PCB-1232	1 U	1 U	1 U
PCB-1242	1 U	1 U	1 U
PCB-1248	1 U	1 U	1 U
PCB-1254	1 U	1 U	1 U
PCB-1260	1 U	1 U	1 U

.

LOCATION DATE COLLECTED	MINIMUM NONDETECTED		MINIMUM	MAXIMUM DETECTED	LOCATION OF MAXIMUM DETECTED	FREQUENCY OF DETECTION
PESTICIDE/PCBS (ug/L)						
ALPHA-BHC	0.05 U	0.05 U	ND	ND		0/3
BETA-BHC	0.05 U	0.05 U	ND	ND		0/3
DELTA-BHC	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR	0.05 U	0.05 U	ND	ND		0/3
ALDRIN	0.05 U	0.05 U	ND	ND		0/3
HEPTACHLOR EPOXIDE	0.05 U	0.05 U	ND	ND		0/3
ENDOSULFAN I	0.05 U	0.05 U	ND	ND		0/3
DIELDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDE	0.1 U	0.1 U	ND	ND		0/3
ENDRIN	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDD	<u>0.1 U</u>	0.1 U	ND	ND		0/3
ENDOSULFAN SULFATE	0.1 U	0.1 U	ND	ND		0/3
4,4'-DDT	0.1 U	0.1 U	ND	ND		0/3
METHOXYCHLOR	0.5 U	0.5 U	ND	ND		0/3
ENDRIN KETONE	0.1 U	0.1 U	ND	ND ND		0/3
ENDRIN ALDEHYDE	0.1 U	0.1 U	ND	ND		0/3
ALPHA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
GAMMA CHLORDANE	0.05 U	0.05 U	ND	ND		0/3
TOXAPHENE	5 U	5 U	ND	ND		0/3
PCB-1016	1 U	1 U	ND	ND		0/3
PCB-1221	2 U	2 U	ND	ND		0/3
PCB-1232	1 U	1 U	ND	ND		0/3
PCB-1242	1 U	1 U	ND	ND		0/3
PCB-1248	1 U	1 U	ND	ND		0/3
PCB-1254	1 U	1 U	ND	ND		0/3
PCB-1260	1 U	1 U	ND	ND		0/3

LOCATION DATE COLLECTED	73-FB-01 04/20/95	73-FB-02 04/20/95	73-FB-03 04/20/95
ANALYTES (ug/L)			
ALUMINUM	73.6	40 U	40 U
ANTIMONY	50 U	50 U	50 U
ARSENIC	10 U	10 U	10 U
BARIUM	2.7	2.1	3
BERYLLIUM	1 U	1 U	1 U
CADMIUM	5 U	5 U	5 U
CALCIUM	138	102	21400
CHROMIUM	10 U	10 U	10 U
COBALT	20 U	20 U	20 U
COPPER	16.1	10 U	10 U
IRON	20.4	73.1	13.6
LEAD	3 U	3 U	6.2
MAGNESIUM	50 U	69.1	855
MANGANESE	2 U	2 U	2 U
MERCURY	0.2 U	0.2 U	0.2 U
NICKEL	20 U	20 U	20 U
POTASSIUM	1000 U	2410	1020
SELENIUM	5 U	5 U	5 U
SILVER	5 U	5 U	5 U
SODIUM	200 U	246	60700
THALLIUM	10 U	10 U	10 U
VANADIUM	10 U	10 U	10 U
ZINC	20.3	13.4	28

			KAININAI IKA		LOCATION OF	FREQUENCY
LOCATION	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	MAXIMUM	OF
DATE COLLECTED	NONDETECTED	NONDETECTED	DETECTED	DETECTED	DETECTED	DETECTION
ANALYTES (ug/L)						
ALUMINUM	40 U	40 U	73.6	73.6	73-FB-01	1/3
ANTIMONY	50 U	50 U	ND	ND /		0/3
ARSENIC	10 U	10 U	ND	ND		0/3
BARIUM	NA	NA	2.1	3	73-FB-03	3/3
BERYLLIUM	1 U	1 U	ND	ND		0/3
CADMIUM	5 U	5 U	ND	ND		0/3
CALCIUM	NA	NA	102	21400	73-FB-03	3/3
CHROMIUM	10 U	10 U	ND	ND		0/3
COBALT	20 U	20 U	ND	ND		0/3
COPPER	10 U	10 U	16.1	16.1	73-FB-01	1/3
IRON	NA	NA	13.6	73.1	73-FB-02	3/3
LEAD	3 U	3 U	6.2	6.2	73-FB-03	1/3
MAGNESIUM	50 U	50 U	69.1	855	73-FB-03	2/3
MANGANESE	2 U	2 U	ND	ND		0/3
MERCURY	0.2 U	0.2 U	ND	ND		0/3
NICKEL	20 U	20 U	ND	ND		0/3
POTASSIUM	1000 U	1000 U	1020	2410	73-FB-02	2/3
SELENIUM	5 U	5 U	ND	ND		0/3
SILVER	5 U	5 U	ND	ND		0/3
SODIUM	200 U	200 U	246	60700	73-FB-03	2/3
THALLIUM	10 U	10 U	ND	ND		0/3
VANADIUM	10 U	10 U	ND	ND		0/3
ZINC	NA	NA	13.4	28	73-FB-03	3/3

APPENDIX R.1 SURFACE SOIL ORGANICS

STATISTICAL SUMMARY SURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
DEPTH	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)						
METHYLENE CHLORIDE	4.85	1.85	5.76	1.46	0.59	7.51
ACETONE	6.15	1.21	6.75	1.80	0.16	6.70
TRICHLOROETHENE	5.35	1.34	6.01	1.61	0.49	7.55
TOLUENE	4.85	1.85	5.76	1.46	0.59	7.51
ETHYLBENZENE	5.31	1.32	5.96	1.60	0.48	7.48
TOTAL XYLENES	5.42	0.79	5.81	1.68	0.18	5.99
SEMIVOLATILES (ug/kg)						
ACENAPHTHENE	183.85	19.27	193.37	5.21	0.12	195.66
2.4-DINITROPHENOL	431.92	88.31	475.57	6.03	0.31	525.39
DIBENZOFURAN	178.31	37.64	196.91	5.15	0.33	219.77
FLUORENE	181.54	26.64	194.71	5.19	0.18	200.73
PHENANTHRENE	220.62	197.56	318.26	5.19	0.61	330.06
ANTHRACENE	188.46	10.49	193.64	5.24	0.05	193.81
CARBAZOLE	187.69	10.73	192.99	5.23	0.06	193.14
DI-N-BUTYL PHTHALATE	208.46	58.79	237.52	5.31	0.22	235.01
FLUORANTHENE	234.23	180.09	323.24	5.33	0.44	295.38
PYRENE	241.15	184.64	332.41	5.36	0.43	304.11
BENZO(A)ANTHRACENE	197.77	100.84	247.61	5.20	0.42	255.60
CHRYSENE	194.23	91.28	239.35	5.19	0.42	252.01
BIS(2-ETHYLHEXYL)PHTHALATE	100.08	55.55	127.53	4.48	0.52	140.37
BENZO(B)FLUORANTHENE	186.15	63.75	217.66	5.17	0.34	228.46
BENZO(K)FLUORANTHENE	206.54	93.48	252.74	5.27	0.32	246.30
BENZO(A)PYRENE	196.54	66.31	229.31	5.24	0.29	230.48
INDENO(1,2,3-CD)PYRENE	188.69	46.46	211.66	5.21	0.27	219.61
DIBENZO(A,H)ANTHRACENE	173.08	40.85	193.27	5.10	0.40	223.95
BENZO(G,H,I)PERYLENE	182.69	39.19	202.06	5.18	0.29	217.36
PESTICIDE/PCBS (ug/kg)						
HEPTACHLOR EPOXIDE	1.07	0.38	1.25	0.03	0.25	1.22
4,4'-DDE	25.08	33.23	41.50	1.99	1.73	280.72
ENDOSULFAN II	2.19	0.74	2.56	0.74	0.27	2.54
4,4'-DDD	12.53	16.85	20.86	1.75	1.29	54.52
4,4'-DDT	13.38	20.07	23.30	1.63	1.38	60.59
PCB-1260	21.27	9.30	25.86	3.01	0.29	24.72

APPENDIX R.2 SURFACE SOIL METALS

STATISTICAL SUMMARY SURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE_STAMP DEPTH MOISTURE	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ALUMINUM	2445.31	1487.21	3180.34	7.61	0.68	4022.67
BARIUM	11.75	8.76	16.08	2.26	0.66	18.66
CALCIUM	633.02	880.48	1068.19	5.95	0.98	1384.31
CHROMIUM	4.00	2.27	5.12	1.21	0.65	6.48
COPPER	15.32	20.20	25.30	1.79	1.50	119.72
IRON	3031.77	4435.91	5224.17	7.41	1.03	7567.30
LEAD	38.98	55.65	66.49	2.71	1.46	217.05
MAGNESIUM	81.73	53.60	108.22	4.21	0.64	129.09
MANGANESE	35.69	51.07	60.93	2.80	1.22	111.48
NICKEL	2.76	1.09	3.30	0.96	0.31	3.28
POTASSIUM	125.12	37.42	143.61	4.80	0.22	140.80
SODIUM	27.90	11.61	33.64	3.27	0.32	33.43
THALLIUM	1.24	0.32	1.40	0.19	0.20	1.38
VANADIUM	3.92	3.09	5.44	1.09	0.79	7.21
ZINC	63.57	108.61	117.24	3.03	1.52	439.65

APPENDIX R.3 SUBSURFACE SOIL ORGANICS

STATISTICAL SUMMARY SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
DEPTH	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)	57.04	07.04	00.00	0.00	4.00	405 00
	57.61	97.34	96.33	3.09	1.33	165.26
CARBON DISULFIDE	5.66	1.00	6.06	1.71	0.26	6.40
2-BUTANONE	6.74	5.49	8.92	1.77	0.47	8.20
TRICHLOROETHENE	5.58	0.95	5.96	1.70	0.25	6.29
TOLUENE	5.58	1.20	6.06	1.67	0.41	7.05
TOTAL XYLENES	4.89	1.89	5.65	1.46	0.61	7.20
SEMIVOLATILES (ug/kg)						
NAPHTHALENE	183.68	34.39	197.37	5.18	0.29	212.08
2-METHYLNAPHTHALENE	183.95	33.36	197.22	5.19	0.27	210.08
ACENAPHTHENE	180.05	32.99	193.17	5.17	0.23	200.12
DIBENZOFURAN	183.00	37.12	197.77	5.17	0.35	220.57
FLUORENE	185.26	23.18	194.49	5.21	0.14	197.23
PHENANTHRENE	241.05	232.83	333.67	5.33	0.44	280.43
ANTHRACENE	194.74	27.16	205.54	5.26	0.12	205.06
CARBAZOLE	185.79	21.43	194.31	5.22	0.13	196.27
DI-N-BUTYL PHTHALATE	211.32	45.58	229.45	5.33	0.19	229.53
FLUORANTHENE	282.11	392.15	438.11	5.38	0.53	327.62
PYRENE	253.68	277.95	364.26	5.35	0.46	294.04
BENZO(A)ANTHRACENE	222.63	165.93	288.64	5.29	0.40	261.85
CHRYSENE	217.89	142.85	274.72	5.29	0.37	251.81
BIS(2-ETHYLHEXYL)PHTHALATE	121.58	83.57	154.82	4.60	0.64	173.03
BENZO(B)FLUORANTHENE	212.42	123.22	261.44	5.28	0.36	246.21
BENZO(K)FLUORANTHENE	208.42	102.32	249.13	5.28	0.31	238.09
BENZO(A)PYRENE	209.42	118.13	256.41	5.26	0.39	248.50
INDENO(1,2,3-CD)PYRENE	204.74	68.18	231.86	5.29	0.23	224.99
BENZO(G,H,I)PERYLENE	192.47	51.38	212.91	5.22	0.30	221.03
PESTICIDE/PCBS (ug/kg)						
ENDOSULFAN I	1.08	0.49	1.28	0.03	0.27	1.21
4,4'-DDE	12.75	16.67	19.38	1.66	1.35	40.93
4,4'-DDD	40.82	83.74	74.13	1.93	1.85	280.81
4,4'-DDT	7.46	11.10	11.88	1.28	1.10	14.91
ENDRIN ALDEHYDE	2.29	1.73	2.98	0.72	0.38	2.63
ALPHA CHLORDANE	1.37	1.68	2.03	0.09	0.50	1.58
GAMMA CHLORDANE	1.54	1.58	2.17	0.21	0.57	1.94
					2.24	

APPENDIX R.4 SUBSURFACE SOIL METALS

STATISTICAL SUMMARY SUBSURFACE SOIL SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH MOISTURE	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	4282.63	2204.29	5159.51	8.21	0.61	6197.29
ANTIMONY	6.20	1.44	6.77	1.81	0.18	6.67
ARSENIC	1.43	0.67	1.70	0.29	0.35	1.67
BARIUM	14.73	11.94	19.48	2.37	0.85	25.60
CADMIUM	0.66	0.23	0.75	-0.45	0.27	0.74
CALCIUM	495.85	446.01	673.28	5.70	1.15	1356.48
CHROMIUM	6.21	4.03	7.82	1.58	0.78	10.41
COBALT	3.07	2.12	3.91	1.01	0.39	3.58
COPPER	70.57	181.59	142.81	1.73	2.17	1022.74
IRON	4630.63	7201.83	7495.57	7.65	1.28	14060.35
LEAD	62.56	130.59	114.51	2.45	1.84	452.54
MAGNESIUM	159.34	93.88	196.69	4.89	0.67	238.87
MANGANESE	58.82	116.48	105.16	2.62	1.67	278.09
NICKEL	15.49	55.12	37.41	1.20	1.10	13.72
POTASSIUM	158.87	93.63	196.11	4.96	0.43	193.35
SELENIUM	0.63	0.22	0.72	-0.49	0.23	0.70
SILVER	0.78	0.83	1.11	-0.43	0.46	0.90
SODIUM	39.13	32.25	51.96	3.46	0.60	51.48
THALLIUM	1.33	0.70	1.61	0.22	0.30	1.50
VANADIUM	6.38	6.02	8.78	1.50	0.89	11.45
ZINC	121.50	214.71	206.92	3.08	1.99	1319.18

APPENDIX R.5 GROUNDWATER ORGANICS

STATISTICAL SUMMARY GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

LOCATION DATE COLLECTED	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/L)						
METHYLENE CHLORIDE	2.91	2.02	4.01	0.79	0.81	6.28
ACETONE	5.55	0.93	6.06	1.70	0.16	6.09
CARBON DISULFIDE	5.00	0.00	5.00	1.61	0.00	5.00
1,2-DICHLOROETHANE	2.82	1.40	3.58	0.94	0.43	3.78
2-BUTANONE	3.91	1.87	4.93	1.17	0.75	8.01
SEMIVOLATILES (ug/L)						
NAPHTHALENE	4.82	0.60	5.15	1.56	0.15	5.29
DI-N-BUTYL PHTHALATE	4.64	1.12	5.25	1.50	0.32	5.76
BIS(2-ETHYLHEXYL)PHTHALATE	4.00	1.79	4.98	1.23	0.67	7.25

APPENDIX R.6 GROUNDWATER METALS

STATISTICAL SUMMARY GROUNDWATER SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
ANALYTES (ug/L)						
ALUMINUM	129.44	138.75	205.24	4.26	1.20	550.36
BARIUM	41.05	38.60	62.14	3.45	0.73	75.90
CALCIUM	56392.73	47322.85	82247.03	10.39	1.36	466625.67
CHROMIUM	5.93	2.06	7.05	1.74	0.28	7.05
COBALT	18.53	14.71	26.56	2.71	0.62	29.76
IRON	1269.70	1963.09	2342.21	5.91	1.81	36460.00
LEAD	1.67	0.57	1.99	0.48	0.25	1.94
MAGNESIUM	5544.55	4282.71	7884.36	8.37	0.76	10817.02
MANGANESE	68.63	74.90	109.55	3.41	1.52	878.28
NICKEL	18.43	18.81	28.70	2.62	0.70	30.20
POTASSIUM	3148.18	2153.59	4324.77	7.82	0.76	6312.14
SODIUM	9381.82	3258.31	11161.96	9.09	0.34	11772.95
ZINC	22.76	13.82	30.32	2.99	0.55	34.34

APPENDIX R.7 SEDIMENT ORGANICS

STATISTICAL SUMMARY SEDIMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

1

			NORMAL			LOG
LOCATION	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
DATE COLLECTED	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
DEPTH	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)						
ACETONE	280.00	116.90	417.54	5.58	0.38	668.43
CHLOROFORM	32.75	30.98	69.20	3.22	0.78	903.82
2-BUTANONE	83.25	9.71	94.67	4.42	0.12	100.51
CARBON TETRACHLORIDE	15.38	2.14	17.89	2.73	0.14	19.21
TETRACHLOROETHENE	12.88	4.63	18.32	2.49	0.47	47.58
TOLUENE	9.38	8.26	19.09	1.98	0.82	458.95
SEMIVOLATILES (ug/kg)						
DI-N-BUTYL PHTHALATE	1285.00	282.08	1616.86	7.14	0.23	1987.62
PESTICIDE/PCBS (ug/kg)						
BETA-BHC	4.16	2.78	7.43	1.29	0.56	25.97
4,4'-DDE	12.18	7.37	20.85	2.33	0.70	170.77
4,4'-DDD	42.93	42.95	93.45	3.06	1.53	64285790.52

APPENDIX R.8 SEDIMENT METALS

FREQUENCY OF DETECTION SUMMARY SEDIMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TAL METALS

LOCATION DATE COLLECTED DEPTH	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						,
ALUMINUM	12846.00	16707.63	32502.52	8.46	1.94	1.35E+13
ANTIMONY	24.79	14.91	42.33	3.09	0.53	138.92
BARIUM	75.98	42.75	126.27	4.08	0.98	15688.63
CALCIUM	2975.50	2024.90	5357.80	7.61	1.26	7.17E+07
CHROMIUM	14.88	19.41	37.71	2.07	1.26	302239.18
COBALT	14.33	14.71	31.63	2.34	0.85	805.37
COPPER	33.11	45.27	86.37	2.71	1.51	3.67E+07
IRON	4812.25	6639.10	12623.16	7.65	1.54	7.37E+09
LEAD	59.81	78.99	152.75	2.96	2.25	7.65E+14
MAGNESIUM	535.95	472.27	1091.58	5.89	1.11	846361.48
MANGANESE	56.93	46.43	111.54	3.84	0.69	754.50
POTASSIUM	615.00	534.09	1243.36	6.19	0.73	13444.80
SODIUM	144.00	63.68	218.92	4.87	0.57	951.84
VANADIUM	12.75	18.51	34.53	1.85	1.25	42666.91
ZINC	95.18	124.81	242.01	3.83	1.47	11164392.69

APPENDIX R.9 FISH FILLET

STATISTICAL SUMMARY FISH TISSUE - FILLET SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TCL ORGANICS

			NORMAL			LOG
	NORMAL	NORMAL	UPPER 95%	LOG	LOG	UPPER 95%
	ARITHMETIC	STANDARD	CONFIDENCE	ARITHMETIC	STANDARD	CONFIDENCE
	MEAN	DEVIATION	INTERVAL	MEAN	DEVIATION	INTERVAL
VOLATILES (ug/kg)				• •		
	4912.50	2384.80	7718.22	8.40	0.51	26445.71
PESTICIDE/PCBs (ug/kg) 4,4'-DDD	5.14	0.38	5.58	1.63	0.07	5.67

STATISTICAL SUMMARY FISH TISSUE - FILLET SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TAL METALS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	1.02	0.53	1.64	-0.08	0.52	5.51
BARIUM	0.08	0.09	0.18	-2.97	0.99	14.15
CALCIUM	861.00	829.81	1837.27	6.48	0.80	25241.39
COPPER	0.33	0.18	0.54	-1.25	0.67	4.28
MAGNESIUM	295.00	4.24	299.99	5.69	0.01	300.94
MANGANESE	0.23	0.16	0.41	-1.67	0.68	2.92
MERCURY	0.16	0.12	0.30	-2.09	0.86	10.13
POTASSIUM	3245.00	391.71	3705.84	8.08	0.13	3973.70
SELENIUM	0.17	0.04	0.21	-1.80	0.20	0.23
SODIUM	659.50	178.46	869.46	6.46	0.28	1139.28
THALLIUM	0.10	0.03	0.13	-2.38	0.35	0.22
ZINC	7.63	1.22	9.06	2.02	0.18	10.12

1

APPENDIX R.10 FISH WHOLE BODY

STATISTICAL SUMMARY FISH TISSUE - WHOLE BODY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJUENE, NORTH CAROLINA TCL ORGANICS

	NORMAL ARITHMETIC MEAN	NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	LOG ARITHMETIC MEAN	LOG STANDARD DEVIATION	LOG UPPER 95% CONFIDENCE INTERVAL
VOLATILES (ug/kg) METHYLENE CHLORIDE ACETONE 2-BUTANONE (MEK) TOLUENE PESTICIDE/PCBs (ug/kg)	15560.00 424360.00 15472.00 12040.00	20505.80 619764.77 20584.70 20133.75	35111.45 1015280.54 35098.68 31236.72	8.67 10.67 8.55 8.53	1.67 3.03 1.83 1.30	2.27E+07 2.14E+17 1.51E+08 1.19E+06
4,4-DDE 4,4-DDD	6.95 12.34	4.50 15.49	11.24 27.11	1.82 2.08	0.50 0.91	14.51 113.06

STATISTICAL SUMMARY FISH TISSUE - WHOLE BODY SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA TAL METALS

1

ARITH		NORMAL STANDARD DEVIATION	NORMAL UPPER 95% CONFIDENCE INTERVAL	Log Arithmetic Mean	Log Standard Deviation	LOG UPPER 95% CONFIDENCE INTERVAL
ANALYTES (mg/kg)						
ALUMINUM	9.82	8.53	17.96	1.73	1.36	1810.63
ANTIMONY	1.12	0.39	1.49	0.05	0.44	2.20
ARSENIC	0.06	0.05	0.11	-2.95	0.59	0.16
BARIUM	1.65	0.89	2.50	0.34	0.71	7.56
BERYLLIUM	0.01	0.01	0.02	-4.57	0.57	0.03
	88.00	12172.29	34793.79	9.93	0.56	60663.04
COPPER	2.12	3.64	5.59	-0.29	1.49	447.31
IRON	18.60	8.23	26.45	2.82	0.53	46.68
LEAD	0.21	0.20	0.40	-2.16	1.37	38.77
	501.80	213.21	805.08	6.35	0.34	950.10
MANGANESE	3.18	1.54	4.65	1.02	0.64	10.92
MERCURY	0.06	0.05	0.10	-3.23	0.93	0.60
	564.00	412.23	2957.04	7.84	0.18	3137.21
SELENIUM	0.28	0.11	0.39	-1.34	0.43	0.54
	412.40	562.45	1948 .67	7.20	0.34	2227.13
THALLIUM	0.11	0.00	0.12	-2.19	0.04	0.12
ZINC	24.48	6.16	30.35	3.17	0.29	34.87

APPENDIX S COPC SELECTION WORKSHEETS , surfai) Soil

•

						UIIVAL C	OCENIC				
		LüG		(19/L) BLANK	2×Дж.	HISTORY	NUTRIENT	IOXICITY			COPC
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	田に	₹ <u> </u> Z	2	RBC	ARAR	N
Volatiles:	(µg/kg)			·					113/bg) 85,000		
Methipene Chloride	25-27		2/13	10	NA			C	15,000	N	<u> </u>
Acetone	10J		1/13	93	· N/A		_			480,000	↓
Trichloroethene	<u>1</u> J		1/13	N.D	M	┝━-┼-		C	58,000		H
Toluene	15-25		3/13	<u>4</u> <i>T</i>	NA		<u> </u>	ļ	6,00,00	Y, 600,00	Ø
Ethylpensene	IJ		1//3	NB	NA	┝		·	7,00,00	780,002	₽
Xylenes (total)	3J-5J		2/13	NO	NA	-	·		160,000,0	NIGX07	
Semirolatiles:						┝─┼╸			1/200	1/1 .00	
214 - Dinitraphenol	150.T		1/13	ND	NA	┝╼╍┼╍			10,000	× /6,00 0×470,00	\vdash
Acenaphtheire	1307		1/13	1	NA	\vdash			4,7000	~3,000	₽
Dibenzofuran	58J		1/13		NA NA	┝╌┼╸				310,000	<u> </u>
Fluorene	1005	22222	1/13			$\left - \right $		-	230,00	- <i>Sigooo</i>	
	595-560	223,38	3/13		<u> </u>	-+	-		22012 20	5230,000	9
Anthracene	190J 190J		1/13		NA NA	┝╌┼╴		C	32,000	<u>102,30,000</u>	1
Carbazole		7		IJ	NA NA	╞╼┼╸		⊢~́	TENAN	-780ja	5
Di-n-butylphalate	2605-390		2/13	ļ	· NA	┝─┼╴			3,00,00		
Ausranthene	130T- 830 15DT- 850	•	3/13	ND	NÁ	┝╌┼╴			2 242 413	220.000	<u>}</u> [
Ryrene			3/13	1	NA			10	880	R syou	
	76J-510 70J-470		3/13		NA			C	88,000		
Chrysing Dallie		7	9/13	as	NA NA			Č	46,000	¥	$\left - \right $
Bis (2- other hoxy) prthatio Ben 20(6) Fluor orthere	1 405- 87 89.J- 360.		3/13	NA		$\uparrow \uparrow$		C	880	/	
Benzolk Huoranthene	84.J- 360. 120J-510	230.48	2/13		NA	$\uparrow \uparrow$		Č	8,800		
	1007-400	+199,98	2/13		MA	\vdash		tč	88	1	X
Beneo(a) pyrene			2/13	$-\sqrt{2}$	NA NA	┢╼┼		$\overline{\Lambda}$	880	1	╞┹┷┨
Ideno(1,2,3-cd) ayour	1381-5101	L	4/13	<u>v</u>	1 1/14				1000	<u>.</u>	استبينا

USEPA Region II RBC for pyrene used as a surrogate.

· Surface Soil

							ANTHROPOGENIC NUTRIENT				
•										•	
		0000		-	2X Ave.	HISTORY		LOXICITY			
CONTAMINANT	RANGE	;223.95 (95%UCL	FREQUENCY	BLANK	BACKGROUND	ISH		XO	RBC	ARAR	SOPC
		8 23577		·ND	NA			H C	88	14440	▼
being da his) agaderedo	705-100 70T-250T	211.76	2/13	NA NA	NA	\vdash			230,000		X
Dibenzola, h) contracent benzala, h, i) perglende Pest / PCBs:	105 220	octri i da		7° N	A				nu nu	-	
Hertachlor Exercise	2.3		1/13	ND	NA			C	70		+-1
4.4'-DDE	4.3-835		6/13	ND	NA			Č	1,900	\checkmark	\square
Endosuldan II (1)	3.8NJ-3.9N	σ	2/13	ND	NA			-	471.000	47,000	
4,4'-DDD	3.8NJ-596		7/13	ND	NA			C	2,700	/	
4,4' - DDT	25-56J		3/13	0,3	NĂ .			C	1,900		
PCB-1260(2)	52J		1/13	ND	·			C.	83	-	
	ļ		1						ļ		
Inorganics	(mg/tg)								19/20) 78:000		
Aluminum	456-5040		13/13	73.6	5,940,594				78,000	7,800	\downarrow
Barium	2.7-36.		13/13	3	17.36			ļ	5,500	- 550	
Calcium Chromium (3)	79.3-3460	`	13/13	21,400	1,396.788		λ	ţ	MA		↓]
Chromium (3)	2.3-8.6		11/13		6.69.3	$\left - \right $			-390	.39	
Copper	2,5-55.6		113	Roll	7.2		<u>- </u> }		2,400	v270	
Iron	509-16,40)	13/13	73.1	3,755,063	$\left - \right $	X	[400 40	Kalls	\mathbf{P}
Lead	2-1785 28.5-187		13/13	11.2	23,749	┝─┤	-		4000		┼──┤
Magnesium		111.48	13/13	855	18,497	$\left - \right $	-~~		7/14 740	180	
Manganese. Nickel	2 <u>9-163</u> T 4.6-5.7	<u>v 111.78</u>	2/13		3,434	┝─┤				· 160	
	7.6 J.F 248*		1/13	2,410	199.61	┝─┤	X		NA		┼──┨
Tolassium	57, 3-56,3		2/13	60,700	59.298	┝─┤	Ŕ		1 M	· · · · · · · · · · ·	┼──┤
Thallium 13	213	× 1.38	1/13	001704	0.899	┢╍╂	$-\frac{1}{2}$		1 XXXXX	0.63	\mathbf{X}
Vanadium	2.8-12		9/13		11.628	$\left - \right $			55A	55	
		_	11/13	28	13.88	<u> </u>				~ 2,30	ل ــــا
Zinc 1	37-3775		11/15	er 0	(), ()				27,000	$- c_{1}\omega$	•

· ,

(1)45EPA Region II RBC for endosultan used as a surrogate. (2) USEPA Legion III RBC for PCBS used as a surrogate. (3) (hvomin)-evaluated as heravalent state. (2)

•

CTD 10512 Site 65 Subgurface Soil (revised)

jite 65 ace Soil ed)	······································							•			1		
	·						•						
	·		•					-					
			·		1	1		1 10	<u>) </u>			1	
									NUTRIENT				
+									ŽI I				
			.		(ug/L) BLANK		1		SE	بر	·]
		. L.C.G			1 declar	1 a X	Hve.	ð		E			υ
	-		EDEOL		(ug/L)	DACK	Ave. GROUND	ISI	35	IOXICITY	RBC	ARAR	COPC
CONTAMINANT	RANGE		FREQU	JENCI	DLAINK	DACA	JROUND						H
Volatiles:	(ug/kg) 75-380		13/	19	93		/A	$\left - \right $			180,000	6	<u>[1</u>
Actore Carbon Disuffice	7)- 25		the second s	<u> ''</u>	<u> </u>	<u> </u>		┼╌┼╴		N N	35M M	ก	
2-Butanone	25-29				75		1	\square		7	1,700,00	0	
Trichloroethene	2T		······································	19						C	1,700,00 1,700,00 58,000		
Thuene	2J 1J			19	4.T						(GD.01	6	
total Xilenes	15-35		51	19				·			1.6 X10 =		
total Xylenes Semirolattiles:	· · · · · · · · · · · · · · · · · · ·							<u> </u>					
Naphthalene	55 J			(9				╞╼╌┠╴			3/0,000		
2-Methy/naphthalene	60J			(9				┼╌┼╴			31900	<u>}</u>	├ {
Acenaphthene	945-975			19	<u> </u>	<u> </u>		┼╌┠╴			470,000 310,000		<u> </u>
Fluorenc		<u>x</u>		19			<u> </u>	┼╌┼╴		·`\	131,00	<u> </u>	
Dibenzofuran Phenanthrene ⁽²⁾	42J		the second s	119			<u>}</u>	+			230,000	<u> </u>	+1
Anthacene	150J-120 290J			19			1			`	2,300,00	8	
larbazole	1205			19	1	1		11		C	32,000		
Di-n-butylphilate	160J= 340.	r -	81	19	15	·					780.00) .	
Huoranthene	2305-190		2	119							30,000	×	
Divence.	1705.140	D .	2	19							230,000	2	
Benzdahnthracene	1005-960	N -261.45	be 2	(9 19		<u> </u>				C	880	ļ	X
Chrysene	1107-800)	21			· ·		┼╌┝	_		88,000	<u> </u>	
BS(2-ethylhexy) Dothalate	37J-370 96J-710		15/	19	27			┼╌┼			44,000 V 580	<u>}</u>	↓]

(*) USEPA Region III LBC. for praphthaline used us a surrogate. (*) USEPA Region IIP LBC for pyrene used as a surrogate.

Subsurface Soil (#USEPA Region TE LBC for Chlardame used as a sum (\$ Chromium evaluated as huxavalent state. (\$ Lead Action Level for residential Soil. (\$ USEPA Region TE LBC for endosultan used as a sum (\$ USEPA Region TE LBC for endosulta	agate.	•
(7) USERA higion II RBC for endosultan used as a surre (7) USERA higion II RBC for endosultan used as a surre (7) CONTAMINANT RANGE 95% UCL FREQUENCY BLANK BACKGROUND E 20, 1,900 CONTAMINANT RANGE 95% UCL FREQUENCY BLANK BACKGROUND E 20, 1,900 Triend 2,35-cd prime 180 J 1/19 MA C (880 Earlo g, b, 1) pervision (807 J 200 2/19) Pest / RC 5: (14/18) Erdosultan 19 3:1NT 1/19 MA C (880 Erdosultan 19 3:1NT 1/19 MA C (900 4,4 - DDE 46-45T 8/19 Erdosultan 19 3:1NT 1/19 C 2700 4,4 - DDE 46-45T 8/19 Erdosultan 10 3:1NT 1/19 C 2400 Alpha Chirdone (9) 8:3J 1/19 C 2400 Gamma Chirdone (9) 31 7:5T 3/19 Alpha Chirdone (18) 40 (197:2) 7/19 Alpha Chirdone (20: 20:00 (20:00 (197:2) 7/19 Alpha Chirdone (20: 20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:00 (20:0	ARAR O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ARAR O	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Endrin Aldehyde ⁽³⁾ 9:45 1/19 Alpha Chlordane ⁽³⁾ 8:35 1/19 Gamma Chlordane ⁽³⁾ 35-7:55 3/19 Lnorganics: (mg/kg) Aluminum 000-0600 (297:20 19/19 7:36 7:375.302 7:800 Antimony 11.8 6.67 1/19 6.409 31/ Arsenic 26-3.3 1.67 3/19 1.968 C.0.37 Barium 27-8.3 19/19 3 14.204 550		
Alpha Chlordane 8:3J 1/19 C 490 Samma Chlordane 3J-7:5J 3/19 C 490 Inorganics: (mg/kg) (mg/kg) (mg/kg) Atuminum 000-06000 (497:2) 19/19 7375.302 7,800 Andrinony 11.8 6.67 1/19 6.409 3.1 Arstinony 11.8 6.67 1/19 6.409 3.1 Arstinony 11.8 6.67 1/19 6.409 3.1 Arstinony 26-3.3 1.167 3/19 1.968 C.037 Barium 27-88.3 19/19 3 14.204 550		
Camma (Wandane" 31-7.5 J 3/19 C 490 Inorganics: (mg/kg) (mg/kg) Atuminum 000-0600 (497.2) [9/19 73.6 7375.302 7,800 Antimony 11.8 6.67 1/19 6.409 3.1 Arsenic 26-3.3 1.167 3/19 1.968 C. 0.37 Barium 27-58.3 19/19 3 14.204 550		-
Lnorganics: (mg/kg) Atuminum 020-0600 (2197:2) [9/19 73.6 7375.302 7.800 Antinony 11.8 6.67 1/19 6.409 3.1 Arsenic 26-3.3 1.67 3/19 1.968 C.0.37 Barium 27-58.3 19/19 3 19.204 550		-
Atuminum Q20-0600 (497.2) 19/19 73.6 7375.302 7,80 Andrinon 11.8 6.67 1/19 6.409 3.1 Avsenic 26-3.3 1.167 3/19 1.968 C.0.37 Barium 27-8.3 19/19 3 14.204 550		
Antinony 11.8 6.67 1/19 6.409 3.1 Arsenic 26-3.3 1.67 3/19 1.968 C. 0.37 Barium 27-8.3 19/19 3 14.204 550		
Arsenic 26-3.3 1.67 3/19 1.948 C. 0.37 Barium 27-58.3 19/19 3 14.204 550	- E	거
Barium 27-88.3 19/19 3 14.204 550	<u> </u>	× (2.5
	<u>/</u> ^	Y (2.)
		-
Calcium 49.8-1350 18/19 21,400 371.509 X NA		
Calcium 49.8-1350 18/19 21,400 371.509 × NA (hromium 3) 2.6-17.3 16/19 12.562		-
Cobalt 11.5 1/19 1.504 470		\neg
77 - (72) / (7		ಗ
Iron 23(J-3/300 17/19 73,1 7252.076 K # 2	300 X	Ċ
Iron 23(J-3/300 (7/19 73,1 7252.076 k 2007) Lead 1.6-539, 452.54 19/19 (12-8:327 4000)	X	Ì
Magnessium 3.8-410 19/19 855 260.718 X NA		뉘
Manganese 2-471:278.29 19/19 1 7919	80 X	-
Nickel 4.8-24-3 13.72 3/19 3.714 160	X	-
Nickel 4.8-243 (3.7) 3/19 3.714 160 Potassium 253-453 4/19 2.410 347.284 X NA		4
Sectium 50.8-130 5/19 60,700 52.676 A NA		
Sedium 50.8-130 5/19 60,700 52.676 A NA Thallium 4.2 1.5 1/19 0.955 20.676	1.3 V	¢.
		`
Zinc 25-714 16/19 28 66.62 2300)
Zinc 2.5-714 16/19 28 66.62 2300 Selevium 1.5 1/19 0.801 39		J

s/0.17)

Ŀ

Grown Water

	1						10	[·]					
					•		HISTORY ANTHROPOGENIC						•
	i						Q			Tapa Ha			
				•	ugh		ΣÖ	固	Х				
					And		P F	F	FOXICITY	(NG)L)		COPC	
	CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	ANA	E	ĝ	RBC	ARAR	8	
	Volatles:	(ug/kg)											
	Methiglene Chloride	1J-2J		6/11	16				C	4.	370	$\left - \right $	
	Acetone	<u>57-71</u> 57		7/11	56					3480	21	X	
	Carbon Disubfide	51	0	(/// 8 / //	150			$\left - \right $	Λ	0.12		X	detected
	4.2 - Dichlosoethere	1.7 - 1.5	3,78	3/11	-15-				_ <u></u>	1900	- 190		detected
	2-Butanone Semivolatiles:	13-15					1	\square					
	Naphthalere	3T		(/11						1.500	150		
	Di-n-but ul dethalate	25-65		3/11	15					3,700	370	3000	datestad :
	bis 2-Ethylheid Dachalat	+ IJ-6J	7,25	5/11	25	<i>Field blank</i>)			C	4.8			detected in blank
		(holl)					┝─┼╼	+				+	
	Inorganics:	(Aug./L) 40.3-421		7/11	73,6					37000	3,700		
	Atuminum Barium	17.7-151		10/11	3					2,600	260		
	Calajum	700-1460		1-0 1 11	21,400			K	<u>↓</u>	MA			1
	Calcium (1) (VE) Cobalt	10-10.2	1	2/11	ļ				<u>-</u>	100	1/2		\$
	Cobalt	20,1-52A 41.9-658	N	4(11		· ·	┼╌┼╸	X	<u> </u>	1	-/ 2 - 220 1,100	X	, , , ,
reinclud	Tron		1.94	10/11.	73,1		┼╌┼╴		ľ		not		
Temano		200-1620	the second s	11911	855			X	$\overline{\mathbf{h}}$	NA	84	\sum	
	Magnesium	3-186			<u> </u>					150		X	
/	Spalium 1	620-11A02		11/11	60,700			K	ļ	[NA		<u> </u>	
(Zinc	11 -58.0	3	10/11		1 by			<u> </u>	11-000	1/00	┥╍┥	
	5 Nickel	53.1-59.	¢	2/11	1 1/10	· · · · · · · · · · · · · · · · · · ·	++	1	<u> </u>	-730 NA	-B	+-	
	1 Potassium	1200-799	<u>¢</u>	10/11	2,410	1			1	INA	1	.1	J

· •

.

(1) Chromium evaluated as herafalent state.

Surface Water

	CONTAMINANT Volatices: Acetore 1,2 - Dichlorothane	RANGE (109/L) 5J 1J-1J	UE MAX 95% UCL	FREQUENCY	(ngfL) BLANK 56	(upstream) Ave. BACKGROUND	HISTORY	NUTRIENT	TOXICITY	RBC	NC WQ ARAR	COPC
	Aluminum Barjum	(49/4) 25,400 36.7-69.		1/2 2/2	73.6	333.17 25.67						X
X.	Caleium Chromium Copper	2,000-2680 27.6 41. [~	4	2/2 1/2 1/2	21,200	17,566.67		X			50 7 X	
	Lead Magnesium	348-7,892 45.8 2060-252	2	2/2 1/2 2/2	73.1 (12) WW 80	575.67		XX			1,000	X
	Hanganése Fotassium Sochium Vanadium	57,3-88,4 2970- 3330-632		2/2 2/2	2,410 21410	0,700 9,830.08		K X				X
	Zinc.	24.2. 33.6-144	,	1/2 2/2	-28						50	XX
ľ	·····								•			

V

+ 1

Sedime)

•

i

			· .			,				• .		
							ANTHROPOGENIC NUTRIENT				\square	
ŧ		'					5		5.3			
			•			L کا	AE	х	resid. Soil			
		LOG		Ngth		B	ЩЩ Ц	TOXICITY	5011		0	
	D LYOT				(mean)	LSI	25	DXO (RBC	ARAR	COPC	
CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	E	∢ Z	Ĕ	RBC)	AKAK	191	
latles:	kig/kg)			· 		┝╌┼	_			·····	┼──┤	•
A		V 668.4	4/4	STAL 17	(distilled)	┝╌┼			780,020	alkan	232	Eleter
Aretone	1907-490 795	203.82	<u> </u>	BOV 12		┝╌┼			100,000	121.3		feer in the
1/10/otom 2- Butanone	725-945	100.51	4/4	- voju				4	700,00	5 4		ý ur ibi
Carbon Totrachloride	13J-18J	19.21	2/4			┝╌┼			4,900			
Towachlorothene	GT=15.T	47.58	2/4						2,000			
Toluene	3J-7J	458.95	314	2JV				1.	660,00	0		
mivolatiles:												
Di-n-but uf ditholate	2405-160	OT 1987.6.	2 . 4/4	15				1	780,000			,
st/PCBs ;												
beta-BHC	8.3NJ	~ 25,97	1/4		2.51				350			, I
4.4'- DDE.	185-19NJ	~ 170,77	2/4		2.42				2,700			
4,4-DDD	76J-84J	6.4E+7	2/4	ļ	1.57				1,900	×		
iorganics.	malka)					$\left \right $						
Aluminum	3514-37000	J 1.35EH.		73.6		-			7,800	mg/kg	\mathbf{X}	
Antomony	46.6T	138.92	1/4		,	┞─┤		<u> </u>	3.1		X	
Banjum	13.6-110			3		┼╌┼			550		X	
Calcium	322-964		4/A-	21,400		┼─┤			39			
Chromium	fi.8J-43.6		and the second	·		┼─┼			470	5		
Capalt	36.3	805 37				┼╌┤			290		XXX	
Copper	8.2-100		4/4	73.1	1 par	╆╌╉			2,300		ALC: NO	
Tron	#14-14.60 23.9-176	7.65 61		Fri L	l	+	-12		400*			ζ.
Lead	14.8-114		314	858		┼─┼	$\exists x$		700		100	23
Magnisium	14:0-114	<u>y</u>		1 100	<u> </u>	<u></u>	_1()	L	ليستغيبهما		أستعمل	

 $\mathbf{)}$

* Action level for soils.

- CTOBIZ, Site 65 Sectiment

CONTAMINANT	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	HISTORY	ANTHROPOGENIC	NUTRIENT	VOICH SOL RBC	ARAR	COPC
Mangapese.	25,6-126	754,5	4/4-		<u>.</u>				180	(mg/Kg)	8
Pot of ssium Sectium	410	· · · · · · · · · · · · · · · · · · ·	1/4 -	2410				×Ļ_			
Vanadium	139-203	12/66 01	3/4	60,700		$\left - \right $		X			
Fine	40.5	42666.91 [1.12 Et 7	<u> </u>	28			\rightarrow		2,300		
////C		TILLT				$\left - \right $	-		<i></i>		
					·		$\overline{\cdot}$				
						$\left \right $					
						\square	_				
						$\left - \right $	\neg				
· ·		· · · · ·			•					<u> </u>	
		·									
•											
· · · · · · · · · · · · · · · · · · ·					•		_			· · · · · · · · · · · · · · · · · · ·	
										· · · · · · · · · · · · · · · · · · ·	
······································						$\left - \right $	-				$\left - \right $
			•••••••••••••••••••••••••••••••	·	· · · · · · · · · · · · · · · · · · ·						$\left - \right $
			· · · · · · · · · · · · · · · · · · ·			┝─┤	\dashv				$\left - \right $
					·						
1											

2

• •

CTO 312 Dite 65 Tish - fillet

a.

CONTAMINANT 16/01/105: Acetone 50 Pesticide PCBs:	RANGE	95% UCL	FREQUENCY	BLANK	BACKGROUND	HISTORY ANTHRO	NUTRIENT	ALIDIXOI RBC	ARAR	COPC
Acetone 56 Pesticide PCBs:										+
Pesticide PCBs:	(19/Kg)	(ug/kg) -26,445.7	1 2/4					4.000	,	
4,4'-000	5.75	5.67	1/4					CN13		
3										\square
Inorganics:	ma/ka)	(mg/kg)							<u></u>	\vdash
Aluminum	0.99	5.57	1/4					140	<u>.</u>	-
Aluminum Barium Calcium	0.215	14.15	V4					4.5		\downarrow
	85J-2100		4/4			┝╌┾╼	X	NA		<u> </u>
Copper	0.46 - 0.49	4.28	2/4				₩.	5		
Magnesium	2905-2-19	J 300.94	4/4	 			<u>M</u>	NA		+
Hanganese (DEPUT-UA	552.92	4/4				+	-0.68	0.014	
Mertiliny	1.057J-0.1	N10.13	4/4				X		10.01T	
Potassium	705-35		4/4 4/4				+4-	NA 10.68	2	+
Selenium	0.14-0.2	2 0.23					12	NA	2	
Sodium e	41-869		4/4			┝╍┼╍╸			0.611	X
Thallium	0.11-01	1 0.22	3/4			┝━┼━	┿┿		- 1011-	\square
Finc	5.8J-R.4	- 1.0.12	4/7		· · · · ·		┼╌┼	<u> </u>		┽━┦
					· · · · · · · · · · · · · · · · · · ·		┼╌┼			+
		· · · ·				╏╼╂╾	╆╌╊			┽━┤
							╆┿			++
`							++		1 .	1-1
					<u> </u>		╋╼╋	·		+{
			 				┼╍┼			+1

APPENDIX T CDI HUMAN HEALTH RISK SPREADSHEETS

EXAMPLE SOIL INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of soil

Intake (mg/kg·day) =
$$\frac{C \times CF \times EF \times ED \times IR}{BW \times AT}$$

Where:

С	=	Contaminant concentration in soil (mg/kg)
CF	=	Conversion factor (kg/mg)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
IR	=	Ingestion rate (mg/day)
BW	=	Body weight (kg)
AT _c		Averaging time carcinogen (days)
AT _{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake $(mg/kg \cdot day) = \frac{0.230 \ mg/kg \ x \ 100 \ mg/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1.0E-6 \ kg/mg}{70 \ kg \ x \ 25,550 \ days}$

= 1.1E-07

 $Risk = 1.1E-07 mg/kg day x 7.3 mg/kg day^{-1} = 7.9E-07$

Example Noncarcinogen: Thallium

Intake $(mg/kg \cdot day) = \frac{1.38 \ mg/kg \ x \ 100 \ mg/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1.0E-6 \ kg/mg}{70 \ kg \ x \ 8,760 \ days}$

= 1.9E-06

$$Risk = \frac{1.9E - 06 \ mg/kg \cdot day}{8.0E - 05 \ mg/kg \cdot day} = 2.4E - 02$$

* This example calculation also is applicable for sediment ingestion.

Re: Site 65 Future Residential Adult

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/8W * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = adult exposure frequency (days/yr)	350
ED = adult exposure duration (yr)	24
IR = adult soil ingestion rate (mg/day)	100
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	24
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Rişk	Noncarcinogenic
		(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)pyrene	0.230	350	24	1E-06	100	70	25550	1.1E-07	7.3E+00	7.9E-07	61%	8760	3.2E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	350	24	1E-06	100	70	25550	7.0E-08	7.3E+00	5.1E-07	39%	8760	2 1E-07	0.0E+00	0.0E+00	0%
Iron	7567.300	350	24	1E-06	100	70	25550	3.6E-03	0.0E+00	0.0E+00	0%	8760	1.0E-02	3.0E-01	3.5E-02	59%
Thallium	1.380	350	24	1E-06	100	70	25550	6.5E-07	0.0E+00	0.0E+00	0%	8760	1.9E-06	8.0E-05	2.4E-02	41%
TOTAL										1.3E-06					5.8E-02	

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF ≈ conversion for kg to mg	1E-06
EF = child exposure frequency (days/yr)	350
ED = child exposure duration (yr)	6
IR = child soil ingestion rate (mg/day)	200
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
0010	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk		Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	((days/yr)	(yr)		(mg/day)	(kg)	(daýs)		(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Child	Child	(((g))))	Child	Child	(,.,.,	Child			Child		Child			Child
Benzo(a)pyrene	0.230	350	6	1E-06	200	15	25550	2.5E-07	7.30E+00	1.8E-06	61%	2190	2.9E-06	0.00E+00	0.0E+00	0%
Dibenzo(a,h)anthracene		350	6	1E-06	200	15	25550	1.6E-07	7.30E+00	1.2E-06	39%	2190	1.9E-06	0.00E+00	0.0E+00	0%
fon	7567.300	350	e e	1E-06	200	15	25550	8.3E-03	0.00E+00	0.0E+00	0%	2190	9.7E-02	3.00E-01	3.2E-01	59%
Thallium	1.380	350	6	1E-06	200	15	25550	1.5E-06	0.00E+00	0.0E+00	0%	2190	1.8E-05	8.00E-05	2.2E-01	41%
TOTAL			<u> </u>						1	3.0E-06					5.4E-01	

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (yr)	6
IR = child soil ingestion rate (mg/day)	100
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

СОРС	Concentration (mg/kg)	Exposure Frequency (days/yr) Child	Exposure Duration (yr) Child	Conversion Factor (kg/mg)	Ingestion Rate (mg/day) Child	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Slope Factor (mg/kg/day)-1	Carcinogenic Risk Child	Percent Carcinogenic Risk Child	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day) Child	Reference Dose (mg/kg/day)		Percent Noncarcinogenic Risk
Benzo(a)pyrene Dibenzo(a,h)anthracene Iron Thatlium	0.230 0.150 7567.300 1.380	234 234 234 234	6 6 6	1E-06 1E-06 1E-06 1E-06	100 100 100 100	15 15 15	25550 25550 25550 25550	8.4E-08 5.5E-08 2.8E-03 5.1E-07	7.30E+00 7.30E+00 0.00E+00 0.00E+00	6.2E-07 4.0E-07 0.0E+00 0.0E+00	61% 39% 0% 0%	2190 2190 2190 2190	9.9E-07 6.4E-07 3.2E-02	0.00E+00 0.00E+00 3.00E-01	0.0E+00 0.0E+00 1.1E-01	Child 0% 0% 59%
TOTAL							20000	0.16-07	0.002+00	1.0E-06	0%	2190	5.9E-06	8.00E-05	7.4E-02 1.8E-01	41%

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion for kg to mg	1E-06
EF = aduit exposure frequency (days/yr)	260
ED = adult exposure duration (yr)	4
IR = adult soil ingestion rate (mg/day)	. 100
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	4
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Indestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
COFC	Concentration	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)		(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
	(Adult	Adult	(Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)pyrene	0.230	260	4	1E-06	100	70	25550	1.3E-08	7.3E+00	9.8E-08	61%	1460	2.3E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	260	4	1E-06	100	70	25550	8.7E-09	7.3E+00	6.4E-08	39%	1460	1.5E-07	0.0E+00	0.0E+00	0%
liron	7567.300	260	4	1E-06	100	70	25550	4.4E-04	0.0E+00	0.0E+00	0%	1460	7.7E-03	3.0E-01	2.6E-02	59%
Thallium	1.380	260	4	1E-06	100	70	25550	8.0E-08	0.0E+00	0.0E+00	0%	1460	1.4E-06	8.0E-05	1.8E-02	41%
TOTAL							A COMP. A			1.6E-07					4.3E-02	

SUBSURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INP	UTS
C = contaminant concentration in soil (mg/kg)	specific	
CF = conversion for kg to mg	1	E-06
EF = adult exposure frequency (days/yr)		260
ED = adult exposure duration (yr)		4
IR = adult soil ingestion rate (mg/day)		100
BW = adult body weight (kg)		70
ATc = averaging time for carcinogen (yr)		70
ATnc = averaging time for noncarcinogen (yr)		4
DY = days per year (days/year)		365
CSF = cancer slope factor (mg/kg-day)-1	specific	
RfD = reference dose (mg/kg-day)	specific	

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Stope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)anthracene	0.262	260	4	1E-06	100	70	25550	1.5E-08	7.3E-01	1.1E-08	4%	1460	2.7E-07	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	260	4	1E-06	100	70	25550	1.4E-08	7.3E+00	1.1E-07	37%	1460	2.5E-07	0.0E+00	0.0E+00	0%
Aluminum	6197.290	260	4	1E-06	100	70	25550	3.6E-04	0.0E+00	0.0E+00	0%	1460	6.3E-03	1.0E+00	6.3E-03	5%
Antimony	6.670	260	4	1E-06	100	70	25550	3.9E-07	0.0E+00	0.0E+00	0%	1460	6.8E-06	4.0E-04	1.7E-02	13%
Arsenic	1.670	260	4	1E-06	100	70	25550	9.7E-08	1.8E+00	1.7E-07	59%	1460	1.7E-06	3.0E-04	5.7E-03	4%
Copper	672.000	260	4	1E-06	100	70	25550	3.9E-05	0.0E+00	0.0E+00	0%	1460	6.8E-04	3.7E-02	1.8E-02	14%
Iron	14060.350	260	4	1E-06	100	70	25550	8.2E-04	0.0E+00	0.0E+00	0%	1460	1.4E-02	3.0E-01	4.8E-02	38%
Lead	452.540	260	4	1E-06	100	70	25550	2.6E-05	0.0E+00	0.0E+00	0%	1460	4.6E-04	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	260	4	1E-06	100	70	25550	1.6E-05	0.0E+00	0.0E+00	0%	1460	2.8E-04	2.3E-02	1.2E-02	10%
Nickel	13.720	260	4	1E-06	100	70	25550	8.0E-07	0.0E+00	0.0E+00	0%	1460	1.4E-05	2.0E-02	7.0E-04	1%
Thallium	1.500	260	4	1E-06	100	70	25550	8.7E-08	0.0E+00	0.0E+00	0%	1460	1.5E-06	8.0E-05	1.9E-02	15%
TOTAL									·····	2.9E-07					1.3E-01	

29 041 97

SURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 85 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

Where:	INPUTS	
C = contaminant concentration in soil (mg/kg)		
CF = conversion for kg to mg	1E-06	
EF = adult exposure frequency (days/yr)	260	
ED = adult exposure duration (yr)	4	
IR = adult soil ingestion rate (mg/day)	100	
BW ≈ adult body weight (kg)	70	
ATc = averaging time for carcinogen (yr)	, 70	
ATnc = averaging time for noncarcinogen (yr)	4	
DY = days per year (days/year)	365	
CSF = cancer slope factor (mg/kg-day)-1	specific	
RfD ≈ reference dose (mg/kg-day)	specific	

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adutt	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)pyrene	0.23	260	4	1E-06	100	70	25550	1.3E-08	7.3E+00	9.8E-08	61%	1460	2.3E-07	0.06+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	260	4	1E-06	100	70	25550	8.7E-09	7.3E+00	6.4E-08	39%	1460	1.5E-07	0.0E+00	0.0E+00	0%
Iron	7567.30	260	4	1E-06	100	70	25550	4.4E-04	0.0E+00	0.0E+00	0%	1460	7.7E-03	3.0E-01	2.6E-02	59%
Thallium	1.38	260	4	1E-06	100	70	25550	8.0E-08	0.0E+00	0.0E+00	0%	1460	1.4E-06	8.0E-05	1.8E-02	41%
TOTAL									_	1.6E-07					4.3E-02	

SUBSURFACE SOIL INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Intake from ingestion of soil is calculated as follows:

Intake (mg/kg-day) = C * CF * EF * ED * IR/BW * ATc or ATnc * DY

/here:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion for kg to mg	1E-06
EF = adult exposure frequency (days/yr)	90
ED = adult exposure duration (yr)	1
IR ≈ adult soil ingestion rate (mg/day)	480
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Exposure	Exposure	Conversion	Ingestion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Frequency	Duration	Factor	Rate	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
1	(mg/kg)	(days/yr)	(yr)	(kg/mg)	(mg/day)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Adult	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Adult	Risk
		Adult	Adult		Adult	Adult		Adult			Adult		Adult			Adult
Benzo(a)anthracene	0.262	90	1	1E-06	480	70	25550	6.3E-09	7.3E-01	4.6E-09	4%	365	4.4E-07	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	90	1	1E-06	480	70	25550	6.0E-09	7.3E+00	4.4E-08	37%	365	4.2E-07	0.0E+00	0.0E+00	0%
Aluminum	6197.290	90	1	1E-06	480	70	25550	1.5E-04	0.0E+00	0.0E+00	0%	365	1.0E-02	1.0E+00	1.0E-02	5%
Antimony	6.670	90	1	1E-06	480	70	25550	1.6E-07	0.0E+00	0.0E+00	0%	365	1.1E-05	4.0E-04	2.8E-02	13%
Arsenic	1.670	90	1	1E-06	480	70	25550	4.0E-08	1.8E+00	7.1E-08	59%	365	2.8E-06	3.0E-04	9.4E-03	4%
Copper	672.000	90	1	1E-06	480	70	25550	1.6E-05	0.0E+00	0.0E+00	0%	365	1.1E-03	3.7E-02	3.1E-02	14%
Iron	14060.350	90	1	1E-06	480	70	25550	3.4E-04	0.0E+00	0.0E+00	0%	365	2.4E-02	3.0E-01	7.9E-02	38%
Lead	452.540	90	1	1E-06	480	70	25550	1.1E-05	0.0E+00	0.0E+00	0%	365	7.7E-04	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	90	1	1E-06	480	70	25550	6.7E-06	0.0E+00	0.0E+00	0%	365	4.7E-04	2.3E-02	2.0E-02	10%
Nickel	13.720	90	1	1E-06	480	70	25550	3.3E-07	0.0E+00	0.0E+00	0%	365	2.3E-05	2.0E-02	1.2E-03	1%
Thallium	1.500	90	1	1E-06	480	70	25550	3.6E-08	0.0E+00	0.0E+00	0%	365	2.5E-06	8.0E-05	3.2E-02	15%
TOTAL										1.2E-07					2.1E-01	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency (days/yr)	48
ED = exposure duration (yr)	30
IR = soil ingestion rate (mg/day)	100
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr)	Exposure Duration (yr)	Ingestion Rate (mg/day)	Conversion Factor (kg/mg)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg/day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg/day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	48	30	100	1E-06	70	25550	3.0E-03	0.0E+00	0.0E+00	0%	10950	7.0E-03	1.0E+00	7.0E-03	18%
Antimony	46.600	48	30	100	1E-06	70	25550	3.8E-06	0.0E+00	0.0E+00	0%	10950	8.8E-06	4.0E-04	2.2E-02	58%
Chromium	43,600	48	30	100	1E-06	70	25550	3.5E-06	0.0E+00	0.0E+00	0%	10950	8.2E-06	1.0E+00	8.2E-06	0%
Iron	14600.000	48	30	100	1E-06	70	25550	1.2E-03	0.0E+00	0.0E+00	0%	10950	2.7E-03	3.0E-01	9.1E-03	24%
TOTAL										0.0E+00					3.8E-02	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency for child (days/yr)	48
ED = exposure duration for child (yr)	6
IR = soil ingestion rate for child (mg/day)	200
BW = body weight for child (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr) Child	Exposure Duration (yr) Child	Ingestion Rate (mg/day) Child	Conversion Factor (kg/mg)	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Slope Factor (mg/kg/day)-1	Carcinogenic Risk Child	Percent Carcinogenic Risk Child	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day) Child	Reference Dose (mg/kg/day)		Percent Noncarcinogenic Risk Child
Aluminum	37000.000	48	6	200	1E-06	15	25550	5.6E-03	0.0E+00	0.0E+00	0%	2190	6.5E-02	1.0E+00	6.5E-02	18%
Antimony	46.600	48	6	200	1E-06	15	25550	7.0E-06	0.0E+00	0.0E+00	0%	2190	8.2E-05	4.0E-04	2.0E-01	58%
Chromium	43.600	48	6	200	1E-06	15	25550	6.6E-06	0.0E+00	0.0E+00	0%	2190	7.6E-05	1.0E+00	7.6E-05	0%
Iron	14600.000	48	6	200	1E-06	15	25550	2.2E-03	0.0E+00	0.0E+00	0%	2190	2.6E-02	3.0E-01	8.5E-02	24%
TOTAL										0.0E+00				1	3.5E-01	

SEDIMENT INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency for child (days/yr)	48
ED = exposure duration for child (yr)	6
IR = soil ingestion rate for child (mg/day)	100
BW = body weight for child (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Exposure	Exposure	Ingestion	Conversion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Rate	Factor	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
1		(days/yr)	(yr)	(mg/day)	(kg/mg)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Child	Child	Child		Child	l	Child			Child		Child			Child
Aluminum	12846.000	48	6	100	1E-06	15	25550	9.7E-04	0.0E+00	0.0E+00	0%	2190	1.1E-02	1.0E+00	1.1E-02	14%
Antimony	24,790	48	6	100	1E-06	15	25550	1.9E-06	0.0E+00	0.0E+00	0%	2190	2.2E-05	4.0E-04	5.4E-02	68%
Chromium	14.880	48	6	100	1E-06	15	25550	1.1E-06	0.0E+00	0.0E+00	0%	2190	1.3E-05	1.0E+00	1.3E-05	0%
liron	4812.250	48	6	100	1E-06	15	25550	3.6E-04	0.0E+00	0.0E+00	0%	2190	4.2E-03	3.0E-01	1.4E-02	18%
TOTAL					· · · · ·		······································		1	0.0E+00		1			8.0E-02	

.

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	
CF = conversion for kg to mg	1E-06
EF = exposure frequency (days/yr)	48
ED = exposure duration (yr)	30
IR = soil ingestion rate (mg/day)	100
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	30
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Exposure Frequency (days/yr)	Exposure Duration (yr)	Ingestion Rate (mg/day)	Conversion Factor (kg/mg)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Slope Factor (mg/kg/day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Reference Dose (mg/kg/day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	48	30	100	1E-06	70	25550	3.0E-03	0.00E+00	0.0E+00	0%	10950	7.0E-03	1.00E+00	7.0E-03	18%
Antimony	46.600	48	30	100	1E-06	70	25550	3.8E-06	0.00E+00	0.0E+00	0%	10950	8.8E-06	4.00E-04	2.2E-02	58%
Chromium	43.600	48	30	100	1E-06	70	25550	3.5E-06	0.00E+00	0.0E+00	0%	10950	8.2E-06	1.00E+00	8.2E-06	0%
Iron	14600.000	48	30	100	1E-06	70	25550	1.2E-03	0.00E+00	0.0E+00	0%	10950	2.7E-03	3.00E-01	9.1E-03	24%
TOTAL										0.0E+00					3.8E-02	

SEDIMENT INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

Intake from ingestion of sediment is calculated as follows:

Intake (mg/kg-day) = C * IR * CF * EF * ED/ BW * ATC or ATnc * DY

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion for kg to mg	1E-06
EF = exposure frequency for child (days/yr)	48
ED = exposure duration for child (yr)	6
IR = soil ingestion rate for child (mg/day)	200
BW = body weight for child (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days/year)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Exposure	Exposure	Ingestion	Conversion	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Frequency	Duration	Rate	Factor	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		(days/yr)	(yr)	(mg/day)	(kg/mg)	(kg)	(days)	(mg/kg/day)	(mg/kg/day)-1	Child	Risk	(days)	(mg/kg/day)	(mg/kg/day)	Child	Risk
		Child	Child	Child		Child		Child			Child		Child			Child
Aluminum	37000.000	48	6	200	1E-06	15	25550	5.6E-03	0.0E+00	0.0E+00	0%	2190	6.5E-02	1.0E+00	6.5E-02	18%
Antimony	46.600	48	6	200	1E-06	15	25550	7.0E-06	0.0E+00	0.0E+00	0%	2190	8.2E-05	4.0E-04	2.0E-01	58%
Chromium	43.600	48	6	200	1E-06	15	25550	6.6E-06	0.0E+00	0.0E+00	0%	2190	7.6E-05	1.0E+00	7.6E-05	0%
Iron	14600.000	48	6	200	1E-06	15	25550	2.2E-03	0.0E+00	0.0E+00	0%	2190	2.6E-02	3.0E-01	8.5E-02	24%
TOTAL										0.0E+00					3.5E-01	

EXAMPLE DERMAL CONTACT WITH SOIL CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with soil

Intake $(mg/kg \cdot day) = \frac{C \times CF \times SA \times AF \times Abs \times EF \times ED}{BW \times AT}$

Where:	С	=	Contaminant concentration in soil (mg/kg)
	CF	=	Conversion factor (kg/mg)
	SA	=	Surface available for contact (cm ² /event)
	AF		Soil to skin adherence factor (mg/cm ²)
	Abs	=	Fraction absorbed (percent)
	EF	=	Exposure frequency (days/year)
	ED		Exposure duration (years)
	IR	=	Ingestion rate (mg/day)
	BW	=	Body weight (kg)
	AT _c	=	Averaging time carcinogen (days)
	AT_{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake $(mg/kg \cdot day) = \frac{0.23 \ mg/kg \ x \ 1.0E - 06 \ kg/mg \ x \ 5,800 \ cm^2/event \ x \ 1\% \ x \ 1 \ mg/cm^2 \ x \ 350 \ event/yr \ x \ 24 \ yrs}{70 \ kg \ x \ 25,550 \ days}$

= 6.3E-08

 $Risk = 6.3E-08 mg/kg day \times 1.5E-01 mg/kg day^{-1} = 9.2E-07$

Example Noncarcinogen: Thallium

Intake $(mg/kg day) = \frac{1.38 \ mg/kg \ x \ 1.0E - 06 \ kg/mg \ x \ 5,800 \ cm^2/event \ x \ 1 \ mg/cm^2 \ x \ 0.1\% \ x \ 350 \ event/yr \ x \ 24 \ yrs}{70 \ kg \ x \ 8,760 \ days}$

= 1.1E-07

$$Risk = \frac{1.1E - 07 \ mg/kg \cdot day}{1.6E - 05 \ mg/kg \cdot day} = 1.0E - 02$$

* This example calculation also is applicable for sediment dermal contact.

Re: Site 65 Future Residential Adult

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	5800
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	Specific
EF = adult exposure frequency (events/yr)	350
ED = adult exposure duration (years)	24
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	24
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust	Noncarcinogenic	Percent
	(mg/kg)	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
		(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
		_	Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)pyrene	0.230	1E-06	5800	1 1	0.01	350	24	70	25550	6.3E-08	1.5E+01	9.2E-07	61%	8760	1.8E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0 150	1E-06	5800	1	0.01	350	24	70	25550	4.1E-08	1.5E+01	6.0E-07	39%	8760	1.2E-07	0.0E+00	0.0E+00	0%
iron	7567 300	1E-06	5800	1	0.001	350	24	70	25550	2.1E-04	0.0E+00	0.0E+00	0%	8760	6.0E-04	6.0E-02	1.0E-02	59%
Thallium	1.380	1E-06	5800	1	0.001	350	24	70	25550	3.8E-08	0.0E+00	0.0E+00	0%	8760	1.1E-07	1.6E-05	6.9E-03	41%
TOTAL												1.5E-06			· · · · · · · · · · · · · · · · · · ·	1	1.7E-02	

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
OF = conversion factor (kg/mg)	1E-06
SA = child exposed skin surface area (cm2)	2300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = child exposure frequency (events/yr)	350
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY ≈ day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust	Noncarcinogen	Percent
	(mg/kg)	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinoge
		(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
			Child			Child	Child	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Benzo(a)pyrene	0.230	1E-06	2300	1	0.01	350	6	15	25550	2.9E-08	1.5E+01	4.2E-07	61%	2190	3.4E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	1E-06	2300	1	0.01	350	6	15	25550	1.9E-08	1.5E+01	2.8E-07	39%	2190	2.2E-07	0.0E+00	0.0E+00	0%
Iron	7567.300	1E-06	2300	1	0.001	350	6	15	25550	9.5E-05	0.0E+00	0.0E+00	0%	2190	1.1E-03	6.0E-02	1.9E-02	59%
Thallium	1.380	1E-06	2300	1	0.001	350	6	15	25550	1.7E-08	0.0E+00	0.0E+00	0%	2190	2.0E-07	1.6E-05	1.3E-02	41%
TOTAL												7.0E-07		T			3.1E-02	

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = child exposed skin surface area (cm2)	1745
AF = soil to skin adherence factor (mg/cm2)	0.2
Abs = fraction absorbed (unitless)	specific
EF = child exposure frequency (events/yr)	234
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc ≖ averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

СОРС	Concentration (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2) Child	Adherence Factor (mg/cm2)	Fraction Absorbed (%)	Exposure Frequency (events/yr) Child	Exposure Duration (yrs) Child	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk Child	Percent Carcinogenic Risk Child	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Dermal Adjust. Reference Dose	Noncarcinogenic Risk Child	Percent Noncarcinogenic Risk
Benzo(a)pyrene	0.230	1E-06	1745	0.2	0.01	234	6	15	25550	2.9E-09	1.5E+01	4.3E-08	61%	2100	Child	(mg/kg-day)	0.05.00	Child
Dibenzo(a,h)anthracene	0.150	1E-06	1745	0.2	0.01	234	6	15	25550	1.9E-09	1.5E+01	2.8E-08	39%	2190 2190	3.4E-08 2.2E-08	0 0E+00 0.0E+00	0.0E+00 0.0E+00	0%
Iron	7567.300	1E-06	1745	0.2	0.001	234	6	15	25550	9.7E-06	0.0E+00	0.0E+00	0%	2190	1.1E-04	6.0E-02	1.9E-03	59%
Thallium	1.380	1E-06	1745	0.2	0.001	234	6	15	25550	1.8E-09	0.0E+00	0.0E+00	0%	2190	2.1E-08	1.6E-05	1.3E-03	41%
TOTAL												7.1E-08					3.2E-03	

1

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	4
DY ≈ day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

Note: Inputs are scenario and site specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposur	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
		Factor	Area	Factor	Absorbed	Frequen	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogeni	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/y	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
			Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Aduit		Adut	(mg/kg-day)		Adult
Benzo(a)pyrene	0.230	1E-06	4300	1	0.01	260	4	70	25550	5.8E-09	1.46E+01	8.4E-08	61%	1460	1.0E-07	0.00E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	1E-06	4300	1	0.01	260	4	70	25550	3.8E-09	1.46E+01	5.5E-08	39%	1460	6.6E-08	0.00E+00	0.0E+00	0%
fron	7567.300	1E-06	4300	1	0.001	260	4	70	25550	1.9E-05	0.00E+00	0.0E+00	0%	1460	3.3E-04	6.00E-02	5.5E-03	59%
Thallium	1.380	<u>1</u> E-06	4300	1	0.001	260	4	70	25550	3.5E-09	0.00E+00	0.0E+00	0%	1460	6.0E-08	1.60E-05	3.8E-03	41%
TOTAL												1.4E-07	1				9.3E-03	

20.041.02

SUBSURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY ≂ day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

Note: Inputs are scenario and site specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcino	Percent
		Factor	Area	Factor	Absorbed		Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Tim	Dose	Reference	Risk	Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
		_	Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Aduit		Adult	(mg/kg-day)		Adult
Benzo(a)anthracene	0.262	1E-06	4300	1	0.01	260	4	70	25550	6.5E-09	1.46E+00	9.6E-09	7%	1460	1.1E-07	0.00E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	1E-06	4300	1	0.01	260	4	70	25550	6.2E-09	1.46E+01	9 1E-08	66%	1460	1.1E-07	0.00E+00	0.0E+00	0%
Aluminum	6197.290	1E-06	4300	1	0.001	260	4	70	25550	1.5E-05	0.00E+00	0.0E+00	0%	1460	2.7E-04	2.00E-01	1.4E-03	5%
Antimony	6.670	1E-06	4300	1	0.001	260	4	70	25550	1.7E-08	0.00E+00	0.0E+00	0%	1460	2.9E-07	8.00E-05	3.6E-03	13%
Arsenic	1.670	1E-06	4300	1	0.001	260	4	70	25550	4.2E-09	8.75E+00	3.7E-08	27%	1460	7.3E-08	6.00E-05	1.2E-03	4%
Copper	672.000	1E-06	4300	1	0.001	260	4	70	25550	1.7E-06	0.00E+00	0.0E+00	0%	1460	2.9E-05	7.42E-03	4.0E-03	14%
Iron	14060.350	1E-06	4300	1	0.001	260	4	70	25550	3,5E-05	0.00E+00	0.0E+00	0%	1460	6.2E-04	6.00E-02	1.0E-02	38%
Lead	452.540	1E-06	4300	1	0.001	260	4	70	25550	1.1E-06	0.00E+00	0.0E+00	0%	1460	2.0E-05	0.00E+00	0.0E+00	0%
Manganese (soil)	278,090	1E-06	4300	1	0.001	260	4	70	25550	7.0E-07	0.00E+00	0.0E+00	0%	1460	1.2E-05	4.60E-03	2.6E-03	10%
Nickel	13.720	1E-06	4300	1	0.001	260	4	70	25550	3.4E-08	0.00E+00	0.0E+00	0%	1460	6.0E-07	4.00E-03	1.5E-04	1%
Thailium	1.500	1E-06	4300	1	0.001	260	4	70	25550	3.8E-09	0.00E+00	0.0E+00	0%	1460	6.6E-08	1.60E-05	4.1E-03	15%
TOTAL									•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		1.4E-07		·			2.7E-02	

SURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION OTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	specific
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	5800
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	specific
EF = adult exposure frequency (events/yr)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	(mg/kg)	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
		(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
			Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)pyrene	0.23	1E-06	5800	1	0.01	260	4	70	25550	7.8E-09	1.5E+01	1.1E-07	61%	1460	1.4E-07	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	1E-06	5800	1	0.01	260	4	70	25550	5.1E-09	1.5E+01	7.4E-08	39%	1460	8.9E-08	0.0E+00	0.0E+00	0%
Iron	7567.30	1E-06	5800	1	0.001	260	4	70	25550	2.6E-05	0.0E+00	0.0E+00	0%	1460	4.5E-04	6.0E-02	7.4E-03	59%
Thallium	1.38	1E-06	5800	1	0.001	260	4	70	25550	4.7E-09	0.0E+00	0.0E+00	0%	1460	8.1E-08	1.6E-05	5.1E-03	41%
TOTAL												1.9E-07					1.3E-02	

SUBSURFACE SOIL DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Dermal contact with soil is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion factor (kg/mg)	1E-06
SA = adult exposed skin surface area (cm2)	4300
AF = soil to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless)	Specific
EF = adult exposure frequency (events/yr)	90
ED = adult exposure duration (years)	1
BW ≃ adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

~

COPC	Concentration	Conversion	Surface	Adherence	Fraction	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermally-Adjusted	Noncarcinogenic	Percent
	Carcinogen	Factor	Area	Factor	Absorbed	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(угs)	(kg)	(days)	(mg/kg/day)	Factor	Adult	Risk	(days)	(mg/kg/day)	Dose	Adult	Risk
		· · · · · · · · · · · · · · · · · · ·	Adult			Adult	Adult	Adult		Adult	(mg/kg-day)-1		Adult		Adult	(mg/kg-day)		Adult
Benzo(a)anthracene	0.262	1E-06	4300	1	0.01	90	1	70	25550	5.7E-10	1.5E+00	8.3E-10	7%	365	4.0E-08	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	1E-06	4300	1	0.01	90	1	70	25550	5.4E-10	1.5E+01	7.9E-09	66%	365	3.8E-08	0.0E+00	0.0E+00	0%
Aluminum	6197.290	1E-06	4300	1	0.001	90	1	70	25550	1.3E-06	0.0E+00	0.0E+00	0%	365	9.4E-05	2.0E-01	4.7E-04	5%
Antimony	6.670	1E-06	4300	1	0.001	90	1	70	25550	1.4E-09	0.0E+00	0.0E+00	0%	365	1.0E-07	8.0E-05	1.3E-03	13%
Arsenic	1.670	1E-06	4300	1	0.001	90	1	70	25550	3.6E-10	8.8E+00	3.2E-09	27%	365	2.5E-08	6.0E-05	4.2E-04	4%
Copper	672.000	1E-06	4300	1	0.001	90	1	70	25550	1.5E-07	0.0E+00	0.0E+00	0%	365	1.0E-05	7.4E-03	1.4E-03	14%
Iron	14060.350	1E-06	4300	1	0.001	90	1	70	25550	3.0E-06	0.0E+00	0.0E+00	0%	365	2.1E-04	6.0E-02	3.5E-03	38%
Lead	452.540	1E-06	4300	1	0.001	90	1	70	25550	9.8E-08	0.0E+00	0.0E+00	0%	365	6.9E-06	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	1E-06	4300	1	0.001	90	1	70	25550	6.0E-08	0.0E+00	0.0E+00	0%	365	4.2E-06	4.6E-03	9.2E-04	10%
Nickel	13.720	1E-06	4300	1	0.001	90	1	70	25550	3.0E-09	0.0E+00	0.0E+00	0%	365	2.1E-07	4.0E-03	5.2E-05	1%
Thallium	1.500	1E-06	4300	1	0.001	90	1	70	25550	3.2E-10	0.0E+00	0.0E+00	0%	365	2.3E-08	1.6E-05	1.4E-03	15%
TOTAL												1.2E-08	[9.5E-03	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in sediment (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = exposed skin surface area (cm2)	8300
AF = sediment to skin adherence factor (mg/cm2)	1 .
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = exposure frequency (events/yr)	48
ED = exposure duration (years)	30
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Conversion	Surface	Adherence	ABS	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	(mg/kg)	Factor	Area	Factor	Factor	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Rísk	Noncarcinogenic
		(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor		Risk	(days)	(mg/kg/day)	Dose		Risk
					_						(mg/kg-day)-1					(mg/kg-day)		
Aluminum	37000.000	1E-06	8300	1	0.001	48	30	70	25550	2.5E-04	0.0E+00	0.0E+00	0%	10950	5.8E-04	2.0E-01	2.9E-03	18%
Antimony	46.600	1E-06	8300	1	0.001	48	30	70	25550	3.1E-07	0.0E+00	0.0E+00	0%	10950	7.3E-07	8.0E-05	9.1E-03	58%
Chromium	43.600	1E-06	8300	1	0.001	48	30	70	25550	2.9E-07	0.0E+00	0.0E+00	0%	10950	6.8E-07	2.0E-01	3.4E-06	0%
Iron	14600.000	1E-06	8300		0.001	48	30	70	25550	9.8E-05	0.0E+00	0.0E+00	0%	10950	2.3E-04	6.0E-02	3.8E-03	24%
TOTAL					_						_	0.0E+00					1.6E-02	

1

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = child exposed skin surface area (cm2)	2100
AF = sediment to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	. 48
ED = child expsosure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Conversion	Surface	Adherence	ABS	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarcinogenic	Percent
	Carcinogen	Factor	Area	Factor	Factor	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	1		Dose	Reference		Noncarcinogenic
	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
			Child			Child	Child	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	37000.000	1E-06	2100	1	0.001	48	6	15	25550	5.8E-05	0.0E+00	0.0E+00	0%	2190	6.8E-04	2.0E-01	3.4E-03	18%
Antimony	46.600	1E-06	2100		0.001	48	6	15	25550	7.4E-08	0.0E+00	0.0E+00	0%	2190	8.6E-07	8.0E-05	1.1E-02	58%
Chromium	43.600	1E-06	2100	1	0.001	48	6	15	25550	6.9E-08	0.0E+00	0.0E+00	0%	2190	8.0E-07	2.0E-01	4.0E-06	0%
Iron	14600.000	1E-06	2100	1	0.001	48	6	15	25550	2.3E-05	0.0E+00	0.0E+00	0%	2190	2.7E-04	6.0E-02	4.5E-03	24%
TOTAL												0.0E+00				1	1.9F-02	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = child exposed skin surface area (cm2)	1745
AF = sediment to skin adherence factor (mg/cm2)	0.2
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	48
ED = child expsosure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration Carcinogen (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2) Child	Adherence Factor (mg/cm2)	ABS Factor (%)	Exposure Frequency (events/yr) Child	Exposure Duration (yrs) Child	Body Weight (kg) Child	Average Carc Time (days)	Carc Dose (mg/kg/day) Child	Dermal Adjust. Slope Factor (mg/kg-day)-1	Carcinogenic Risk Child		Average Noncarc Time (days)	Noncarc Dose (mg/kg/day) Child	Dermal Adjust. Reference Dose (mg/kg-day)	Noncarcinogenic Risk Child	Percent Noncarcinogenic Risk Child
Aluminum	12846.000	1E-06	1745	0.2	0.001	48	6	15	25550	3.4E-06	0.0E+00	0.0E+00	0%	2190	3.9E-05	2.0E-01	2.0E-04	14%
Antimony	24.790	1E-06	1745	0.2	0.001	48	6	15	25550	6.5E-09	0.0E+00	0.0E+00	0%	2190	7.6E-08	8.0E-05	9.5E-04	68%
Chromium	14,880	1E-06	1745	0.2	0.001	48	6	15	25550	3.9E-09	0.0E+00	0.0E+00	0%	2190	4.6E-08	2.0E-01	2.3E-07	0%
Iron	4812.250	1E-06	1745	0.2	0.001	48	6	15	25550	1.3E-06	0.0E+00	0.0E+00	0%	2190	1.5E-05	6.0E-02	2.5E-04	18%
TOTAL								·				0.0E+00					1.4E-03	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from dermal contact to sediment is calcuited as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	
CF = conversion factor (kg/mg)	1.00E-06
SA = exposed skin surface area (cm2)	8300
AF = sediment to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = exposure frequency (events/yr)	48
ED = expsosure duration (years)	30
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	30
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD ≈ reference dose (mg/kg-day)	Specific

COPC	Concentration (mg/kg)	Conversion Factor (kg/mg)	Surface Area (cm2)	Adherence Factor (mg/cm2)	ABS Factor (%)	Exposure Frequency (events/yr)	Exposure Duration (yrs)	Body Weight (kg)	Average Carc Time (days)	Carc Dose (mg/kg/day)	Dermal Adjusted Stope Factor (mg/kg-day)-1	Carcinogenic Risk	Percent Carcinogenic Risk	Average Noncarc Time (days)	Noncarc Dose (mg/kg/day)	Dermally-Adjusted Reference Dose (mg/kg-day)	Noncarcinogenic Risk	Percent Noncarcinogenic Risk
Aluminum	37000.000	1E-06	8300	1	0.001	48	30	70	25550	2.5E-04	0.00E+00	0.0E+00	0%	10950	5.8E-04	2.00E-01	2.9E-03	18%
Antimony	46.600	1É-06	8300	1	0.001	48	30	70	25550	3.1E-07	0.00E+00	0.0E+00	0%	10950	7.3E-07	8.00E-05	9.1E-03	58%
Chromium	43.600	1E-06	8300	1	0.001	48	30	70	25550	2.9E-07	0.00E+00	0.0E+00	0%	10950	6.8E-07	2.00E-01	3.4E-06	0%
Iron	14600.000	1E-06	8300	1	0.001	48	30	70 .	25550	9.8E-05	0.00E+00	0.0E+00	0%	10950	2.3E-04	6.00E-02	3.8E-03	24%
TOTAL												0.0E+00					1.6E-02	

SEDIMENT DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from dermal contact to sediment is calculated as follows:

Intake (mg/kg-day) = C * CF * SA * AF * Abs * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CF = conversion factor (kg/mg)	1.00E-06
SA = child exposed skin surface area (cm2)	2100
AF = sediment to skin adherence factor (mg/cm2)	1
Abs = fraction absorbed (unitless) (contaminant specific)	Specific
EF = child exposure frequency (events/yr)	48
ED = child expsosure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Conversion	Surface	Adherence	ABS	Exposure	Exposure	Body	Average	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncare	Dermal Adjust	Noncarcinogenic	Percent
	Carcinogen	Factor	Area	Factor	Factor	Frequency	Duration	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
1	(mg/kg)	(kg/mg)	(cm2)	(mg/cm2)	(%)	(events/yr)	(yrs)	(kg)	(days)	(mg/kg/day)	Factor	Child	Risk	(days)	(mg/kg/day)	Dose	Child	Risk
			Child			Child	Child	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	37000.000	1E-06	2100	1	0.001	48	6	15	25550	5.8E-05	0.0E+00	0.0E+00	0%	2190	6.8E-04	2.0E-01	3.4E-03	18%
Antimony	46.600	1E-06	2100	1	0.001	48	6	15	25550	7.4E-08	0.0E+00	0.0E+00	0%	2190	8.6E-07	8.0E-05	1.1E-02	58%
Chromium	43.600	1E-06	2100	1	0.001	48	6	15	25550	6.9E-08	0.0E+00	0.0E+00	0%	2190	8.0E-07	2.0E-01	4.0E-06	0%
Iron	14600.000	1E-06	2100	1	0.001	48	6	15	25550	2.3E-05	0.0E+00	0.0E+00	0%	2190	2.7E-04	6.0E-02	4.5E-03	24%
TOTAL												0.0E+00				1	1.9E-02	

Computed by: KTW

EXAMPLE INHALATION OF PARTICULATES CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from the inhalation of soil particulates

Intake (mg/kg·day) =
$$\frac{C \times IR \times EF \times ED \times 1/PEF}{BW \times AT}$$

Where:

С	=	Contaminant concentration in soil (mg/kg)
IR	=	Inhalation rate (m ³ /day)
EF	= .	Exposure frequency (days/year)
ED	=	Exposure duration (years)
PEF	=	Particulate Emission Factor (m ³ /kg)
BW	=	Body weight (kg)
AT。		Averaging time carcinogen (days)
AT_{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: Benzo(a)pyrene

Intake $(mg/kg \cdot day) = \frac{0.23 \ mg/kg \ x \ 20 \ m^3/day \ x \ 350 \ days/yr \ x \ 24 \ yrs \ x \ 1/4.6E + 09 \ m^3/kg}{70 \ kg \ x \ 25,550 \ days}$

= 4.7E-12

 $Risk = 4.7E-12 mg/kg day x 6.1 mg/kg day^{-1} = 2.9E-11$

Example Noncarcinogen: There were no noncarcinogenic COPCs with inhalation RfDs selected as COPCs.

Re: Site 65 Future Residential Adult

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Intake from the inhalation of particulates is calculated as follows:

intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	350
ED = adult exposure duration (years)	24
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	24
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Constribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1	1	to	(days)	(mg/kg/day)	(mg/kg-day)	l l	Risk
		(m3/kg)									Risk					
Benzo(a)pyrene	0.230	4.63E+09	350	20	24	70	25550	4.7E-12	6.1E+00	2.9E-11	61%	8760	1.4E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	350	20	24	70	25550	3.0E-12	6.1E+00	1.9E-11	39%	8760	8.9E-12	0.0E+00	0.0E+00	0%
Iron	7567.300	4.63E+09	350	20	24	70	25550	1.5E-07	0.0E+00	0.0E+00	0%	8760	4.5E-07	0.0E+00	0.0E+00	0%
Thaliium	1.380	4.63E+09	350	20	24	70	25550	2.8E-11	0.0E+00	0.0E+00	0%	8760	8.2E-11	0.0E+00	0.0E+00	0%
TOTAL										4.7E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	15
EF = child exposure frequency (days)	350
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Constribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1	ĺ	to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					
Benzo(a)pyrene	0.230	4.63E+09	350	15	6	15	25550	4.1E-12	6.1E+00	2.5E-11	61%	2190	4.8E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	350	15	6	15	25550	2.7E-12	6.1E+00	1.6E-11	39%	2190	3.1E-11	0.0E+00	0.0E+00	0%
Iron	7567.300	4.63E+09	350	15	6	15	25550	1.3E-07	0.0E+00	0.0E+00	0%	2190	1.6E-06	0.0E+00	0.0E+00	0%
Thallium	1.380	4.63E+09	350	15	6	15	25550	2.4E-11	0.0E+00	0.0E+00	0%	2190	2.9E-10	0.0E+00	0.0E+00	0%
TOTAL					<u> </u>					4.1E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Risk = Intake * CSF or /RfD

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	15
EF = child exposure frequency (days)	234
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/kg)	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Constribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
		Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk			(
Benzo(a)pyrene	0.230	4.63E+09	234	15	6	15	25550	2.7E-12	6.1E+00	1.7E-11	61%	2190	3.2E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	234	15	6	15	25550	1.8E-12	6.1E+00	1.1E-11	39%	2190	2.1E-11	0.0E+00	0.0E+00	0%
Iron	7567.300	4.63E+09	234	15	6	15	25550	9.0E-08	0.0E+00	0.0E+00	0%	2190	1.0E-06	0.0E+00	0.0E+00	0%
Thallium	1.360	4.63E+09	234	15	6	15	25550	1.6E-11	0.0E+00	0.0E+00	0%	2190	1.9E-10	0.0E+00	0.0E+00	0%
TOTAL										2.8E-11					0.0E+00	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	. 70
AThc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
1		Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Contribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					
Benzo(a)pyrene	0.230	4.63E+09	260	20	4	70	25550	5.8E-13	6.10E+00	3.5E-12	61%	1460	1.0E-11	0.00E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.150	4.63E+09	260	20	4	70	25550	3.8E-13	6.10E+00	2.3E-12	39%	1460	6.6E-12	0.00E+00	0.0E+00	0%
iron	7567.300	4.63E+09	260	20	4	70	25550	1.9E-08	0.00E+00	0.0E+00	0%	1460	3.3E-07	0.00E+00	0.0E+00	0%
Thallium	1.380	4.63E+09	260	20	4	70	25550	3.5E-12	0.00E+00	0.0E+00	0%	1460	6.1E-11	0.00E+00	0.0E+00	0%
TOTAL										5.8E-12					0.0E+00	

SUBSURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - TRAINEE

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Calculated
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Contribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)						-			Risk					
Benzo(a)anthracene	0.262	4.63E+09	260	20	4	70	25550	6.6E-13	6.10E-01	4.0E-13	1%	1460	1.2E-11	0.00E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	4.63E+09	260	20	4]	70	25550	6.2E-13	6.10E+00	3.8E-12	6%	1460	1.1E-11	0.00E+00	0.0E+00	0%
Aluminum	6197.290	4.63E+09	260	20	4	70	25550	1.6E-08	0.00E+00	0.0E+00	0%	1460	2.7E-07	0.00E+00	0.0E+00	0%
Antimony	6.670	4.63E+09	260	20	4	70	25550	1.7E-11	0.00E+00	0.0E+00	0%	1460	2.9E~10	0.00E+00	0.0E+00	0%
Arsenic	1.670	4.63E+09	260	20	4	70	25550	4.2E-12	1.51E+01	6.3E-11	94%	1460	7.3E-11	0.00E+00	0.0E+00	0%
Copper	672.000	4.63E+09	260	20	4	70	25550	1.7E-09	0.00E+00	0.0E+00	0%	1460	3.0E-08	0.00E+00	0.0E+00	0%
iron	14060.350	4.63E+09	260	20	4	70	25550	3.5E-08	0.00E+00	0.0E+00	0%	1460	6.2E-07	0.00E+00	0.0E+00	0%
Lead	452.540	4.63E+09	260	20	4	70	25550	1.1E-09	0.00E+00	0.0E+00	0%	1460	2.0E-08	0.00E+00	0.0E+00	0%
Manganese (soil)	278.090	4.63E+09	260	20	4	70	25550	7.0E-10	0.00E+00	0.0E+00	0%	1460	1.2E-08	1.43E-05	8.5E-04	100%
Nickel	13.720	4.63E+09	260	20	4	70	25550	3.4E-11	0.00E+00	0.0E+00	0%	1460	6.0E-10	0.00E+00	0.0E+00	0%
Thallium	1.500	4.63E+09	260	20	4	70	25550	3.8E-12	0.00E+00	0.0E+00	0%	1460	6.6E-11	0.00E+00	0.0E+00	0%
TOTAL										6.8E-11					8.5E-04	

SURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA CURRENT MILITARY PERSONNEL - RECREATIONAL USER

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	260
ED = adult exposure duration (years)	4
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	4
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Emission	Frequency	Rate	Duration	Weight	Care Time	Dose	Factor	Risk	Contribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
L		(m3/kg)									Risk					
Benzo(a)pyrene	0.23	4.63E+09	260	20	4	70	25550	5.8E-13	6.1E+00	3.5E-12	61%	1460	1.0E-11	0.0E+00	0.0E+00	0%
Dibenzo(a,h)anthracene	0.15	4.63E+09	260	20	4	70	25550	3.8E-13	6.1E+00	2.3E-12	39%	1460	6.6E-12	0.0E+00	0.0E+00	0%
Iron	7567.30	4.63E+09	260	20	4	70	25550	1.9E-08	0.0E+00	0.0E+00	0%	1460	3.3E-07	0.0E+00	0.0E+00	0%
Thallium	1.38	4.63E+09	260	20	4	70	25550	3.5E-12	0.0E+00	0.0E+00	0%	1460	6.1E-11	0.0E+00	0.0E+00	0%
TOTAL										5.8E-12					0.0E+00	

SUBSURFACE SOIL PARTICULATE INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE CONSTRUCTION WORKER

Intake from the inhalation of particulates is calculated as follows:

Intake (mg/kg-day) = (C * EF * ED * IR * 1/PEF)/(BW * ATc or ATnc * DY)

Where:	INPUTS
C = contaminant concentration in soil (mg/kg)	Specific
CSF = carcinogenic slope factor	Specific
RfD = reference dose for noncarcinogen	Specific
IR = inhalation rate (m3)	20
EF = adult exposure frequency (days)	90
ED = adult exposure duration (years)	1
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	1
DY = day per year (day/yr)	365
PEF = particulate emission factor (m3/kg)	4.63E+09

COPC	Concentration	Particulate	Exposure	Inhalation	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Emission	Frequency	Rate	Duration	Weight	Carc Time	Dose	Factor	Risk	Constribution	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	Factor	(events/yr)	(m3/day)	(yrs)	(kg)	(days)	(mg/kg/day)	(mg/kg-day)-1		to	(days)	(mg/kg/day)	(mg/kg-day)		Risk
		(m3/kg)									Risk					
Benzo(a)anthracene	0.262	4.63E+09	90	20	1	70	25550	5.7E-14	6.1E-01	3.5E-14	1%	365	4.0E-12	0.0E+00	0.0E+00	0%
Benzo(a)pyrene	0.249	4.63E+09	90	20	1	70	25550	5.4E-14	6.1E+00	3.3E-13	6%	365	3.8E-12	0.0E+00	0.0E+00	0%
Aluminum	6197.290	4.63E+09	90	20	1 1	70	25550	1.3E-09	0.0E+00	0.0E+00	0%	365	9.4E-08	0.0E+00	0.0E+00	0%
Antimony	6.670	4.63E+09	90	20	1	70	25550	1.4E-12	0.0E+00	0.0E+00	0%	365	1.0E-10	0.0E+00	0.0E+00	0%
Arsenic	1.670	4.63E+09	90	20	1	70	25550	3.6E-13	1.5E+01	5.5E-12	94%	365	2.5E-11	0.0E+00	0.0E+00	0%
Copper	672.000	4.63E+09	90	20	1	70	25550	1.5E-10	0.0E+00	0.0E+00	0%	365	1.0E-08	0.0E+00	0.0E+00	0%
Iron	14060.350	4.63E+09	90	20	1 1	70	25550	3.1E-09	0.0E+00	0.0E+00	0%	365	2.1E-07	0.0E+00	0.0E+00	0%
Lead	452.540	4.63E+09	90	20	1	70	25550	9.8E-11	0.0E+00	0.0E+00	0%	365	6.9E-09	0.0E+00	0.0E+00	0%
Manganese (soil)	278.090	4.63E+09	90	20	1 1	70	25550	6.0E-11	0.0E+00	0.0E+00	0%	365	4.2E-09	1.4E-05	3.0E-04	100%
Nickel	13.720	4.63E+09	90	20	1	70	25550	3.0E-12	0.0E+00	0.0E+00	0%	365	2.1E-10	0.0E+00	0.0E+00	0%
Thallium	1,500	4.63E+09	90	20	1	70	25550	3.3E-13	0.0E+00	0.0E+00	0%	365	2.3E-11	0.0E+00	0.0E+00	0%
TOTAL										5.8E-12					3.0E-04	

EXAMPLE GROUNDWATER INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of groundwater

Intake (mg/kg·day) =
$$\frac{C \times IR \times EF \times ED}{BW \times AT}$$

Where:

С == Contaminant concentration in groundwater (mg/L) IR = Daily intake ingestion rate (L/day) EF = Exposure frequency (days/year) ED = Exposure duration (years) BW = Body weight (kg) AT_c = Averaging time carcinogen (days) Averaging time noncarcinogen (days) = AT_n

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Manganese

Intake $(mg/kg \cdot day) = \frac{0.186 \ mg/L \ x \ 2 \ L/day \ x \ 350 \ days/yr \ x \ 30 \ yrs}{70 \ kg \ x \ 10,950 \ days}$

= 5.1E-03

 $Risk = \frac{5.1E-03 \ mg/kg \cdot day}{2.3E-02 \ mg/kg \cdot day} = 2.2E-01$

Re: Site 65 Future Residential Adult

GROUNDWATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

intake from drinking water is calculated as follows:

Intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

Where:	IN	PUTS
C = contaminant concentration in water (mg/l)	specific	
IRw = adult daily water ingestion rate (L/Day)		2
EF = adult exposure frequency (days/yr)		350
ED = adult exposure duration (yr)		30
BW = adult body weight (kg)		70
ATc = averaging time for carcinogen (yr)		70
ATnc = averaging time for noncarcinogen (yr)		30
DY = days per year (day/year)		365
CSF = cancer slope factor (mg/kg-day)-1	specific	
RfD = reference dose (mg/kg-day)	specific	

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncare	Reference	Noncarcinogenic	Percent
I	(mg/l)	Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcionogenic
		(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Adult	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Adult	Risk
		Adult	Adult	Adult	Adult		Adult			Adult		Adult			Adult
Carbon Disulfide	0.005	2	350	30	70	25550	5.9E-05	0.0E+00	0.0E+00	0%	10950	1.4E-04	1.0E-01	1.4E-03	0%
Iron	6.58	2	350	30	70	25550	7.7E-02	0.0E+00	0.0E+00	0%	10950	1.8E-01	3.0E-01	6,0E-01	73%
Manganese (water)	0.186	_ 2	350	30	70	25550	2.2E-03	0.0E+00	0.0E+00	0%	10950	5.1E-03	2.3E-02	2.2E-01	27%
TOTAL							_		0.0E+00					8.2E-01	

GROUNDWATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from drinking water is calculated as follows:

intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

Where:	INPUTS
C = contaminant concentration in water (mg/l)	specific
IRw = child daily water ingestion rate (L/Day)	1
EF = child exposure frequency (days/yr)	350
ED = child exposure duration (yr)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (day/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc		Noncarcinogenic	Percent
1		Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
1 1	(mg/l)	(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
		Child	Child	Child	Child		Child	·		Child		Child			Child
Carbon Disulfide	0.005	1	350	6	15	25550	2.7E-05	0.0E+00	0.0E+00	0%	2190	3.2E-04	1.0E-01	3.2E-03	0%
Iron	6.580	1	350	6	15	25550	3.6E-02	0.0E+00	0.0E+00	0%	2190	4.2E-01	3.0E-01	1.4E+00	73%
Manganese (water)	0,186	1 .	350	6	15	25550	1.0E-03	0.0E+00	0.0E+00	0%	2190	1.2E-02	2.3E-02	5.2E-01	27%
TOTAL									0.0E+00					1.9E+00	

GROUNDWATER INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Intake from drinking water is calculated as follows:

Intake (mg/kg-day) = C * IRw * EF * ED/BW * AT or ATnc * DY

Where:	INPUTS
C = contaminant concentration in water (mg/l)	specific
IRw = child daily water ingestion rate (L/Day)	1
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (yr)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (day/year)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Ingestion	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Rate	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(L/day)	(day/year)	(year)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
		Child	Child	Child	Child		Child			Child		Child			Child
Carbon Disulfide	0.005	1	234	6	15	25550	1.8E-05	0.0E+00	0.0E+00	0%	2190	2.1E-04	1.0E-01	2.1E-03	1%
iron	1.270	1	234	6	15	25550	4.7E-03	0.0E+00	0.0E+00	0%	2190	5.4E-02	3.0E-01	1.8E-01	58%
Manganese (water)	0.069	1	234	6	15	25550	2.5E-04	0.0E+00	0.0E+00	0%	2190	2.9E-03	2.3E-02	1.3E-01	41%
TOTAL									0.0E+00					3.1E-01	

EXAMPLE DERMAL CONTACT WITH GROUNDWATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with groundwater

Intake $(mg/kg \cdot day) = \frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}$

Where:

С	=	Contaminant concentration in groundwater (mg/L)
SA		Exposed skin surface available for contact (cm ²)
PC	=	Permeability constant (cm/hr)
ET	=	Exposure time (hr/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
CF	=	Conversion factor (1 L/1,000 cm ³)
BW	=	Body weight (kg)
AT _c	=	Averaging time carcinogen (days)
AT_{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Manganese

Intake $(mg/kg \cdot day) = \frac{0.186 \ mg/L \ x \ 23,000 \ cm^2/hr \ x \ 1.0E - 03 \ cm/hr \ x \ 0.25 \ hr/day \ x \ 350 \ days/yr \ x \ 30 \ yrs \ x \ 1 \ L/1,000 \ cm^3}{70 \ kg \ x \ 10,950 \ days}$

= 1.5E-05

$$Risk = \frac{1.5E - 05 \ mg/kg \cdot day}{4.6E - 03 \ mg/kg \cdot day} = 3.2E - 03$$

Re: Site 65 Future Residential Adult

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

Dermal Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk ≓ Intake * CSF or /RfD	
Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = adult skin surface available for contact (cm2)	23000
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = adult exposure time (hours/day)	0.25
EF = adult exposure frequency (days/yr)	350
ED = adult exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	30
DY = days per year (days)	365

Note: Inputs are site and scenario specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Derm. Adj.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(years)	(mg/kg-day)	Factor	Adult	Risk	(years)	(mg/kg-day)	Dose	Adult	Risk
		Adult		Adult	Adult	Adult		Adult		Adult	(mg/kg-day)-1		Aduit		Adult	(mg/kg-day)		Adult
Carbon Disulfide	0.005	23000	5.30E-01	0.25	350	30	0.001	70	25550	8.9E-05	0.0E+00	0.0E+00	0%	10950	2.1E-04	8.0E-02	2.6E-03	18%
iron	6.58	23000	1.00E-03	0.25	350	30	0.001	70	25550	2.2E-04	0.0E+00	0.0E+00	0%	10950	5.2E-04	6.0E-02	8.6E-03	60%
Manganese (water)	0.186	23000	1.00E-03	0.25	350	30	0.001	70	25550	6.3E-06	0.0E+00	0.0E+00	0%	10950	1.5E-05	4.6E-03	3.2E-03	22%
TOTAL												0.0E+00					1.4E-02	

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD	
Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = child skin surface available for contact (cm2)	10000
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	0.25
EF = child exposure frequency (days/yr)	350
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal, Adjust,	Noncarc	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mgA)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Carbon Disulfide	0.005	10000	5.30E-01	0.25	350	6	0.001	15	25550	3.6E-05	0.0E+00	0.0E+00	0%	2190	4.2E-04	8.0E-02	5.3E-03	18%
Iron	6.580	10000	1.00E-03	0.25	350	6	0.001	15	25550	9.0E-05	0.0E+00	0.0E+00	0%	2190	1.1E-03	6.0E-02	1.8E-02	60%
Manganese (water)	0.186	10000	1.00E-03	0.25	350	6	0.001	15	25550	2.5E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	4.6E-03	6.5E-03	22%
TOTAL							_					0.0E+00					2.9E-02	

GROUNDWATER DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

Dermal Contact from groundwater is calcuated as follows:

Intake (mg/kg-day) = CW * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Risk = Intake * CSF or /RfD	
Where:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = child skin surface available for contact (cm2)	6978
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	0.25
EF = child exposure frequency (days/yr)	234
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal. Adjust.	Noncarc	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference		Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Carbon Disulfide	0.005	6978	5.30E-01	0.25	234	6	0.001	15	25550	1.7E-05	0.0E+00	0.0E+00	0%	2190	2.0E-04	8.0E-02	2.5E-03	48%
iron	1.270	6978	1.00E-03	0.25	234	6	0.001	15	25550	8.1E-06	0.0E+00	0.0E+00	0%	2190	9.5E-05	6.0E-02	1.6E-03	31%
Manganese (water)	0.069	6978	1.00E-03	0.25	234	6	0.001	15	25550	4.4E-07	0.0E+00	0.0E+00	0%	2190	5.1E-06	4.6E-03	1.1E-03	22%
TOTAL												0.0E+00					5.2E-03	

EXAMPLE INHALATION OF VOLATILE ORGANICS CALCULATIONS SITE 65 - ENGINEER AREA DUMP **CONTRACT TASK ORDER 0312**

Purpose: Estimate intake/risk from the inhalation of volatile organics

 $Intake (mg/kg \cdot day) = \frac{Cs \ x \ IR \ x \ ET \ x \ EF \ x \ ED \ x \ 1.0}{BW \ x \ AT}$

Where:

Cs	=	Shower air concentration (mg/m ³)
IR	=	Inhalation rate (m ³ /hr)
ET	=	Exposure time (hrs/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
1.0	=	Absorbed fraction
BW		Body weight (kg)
AT	=	Averaging time (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in groundwater.

Example Noncarcinogen: Carbon Disulfide

 $Intake (mg/kg \cdot day) = \frac{0.01 \ mg/m^3 \ x \ 0.6 \ m^3/hr \ x \ 0.25 \ hrs/d \ x \ 350 \ days/yr \ x \ 30 \ yrs \ x \ 1.0}{70 \ kg \ x \ 10,950 \ days}$

= 2.1E-05

$$Risk = \frac{2.1E - 05 \ mg/kg day}{1.0E - 01 \ mg/kg day} = 2.1E - 04$$

Re: Site 65 Future Residential Adult

)

VOLITILZATION OF COPCs FROM WATER DURING SHOWERING SITE 65 - ENGINEER AREA DUMP GROUNDWATER CONTRACT TASK ORDER 0312

This spreadsheet calculates the average concentration of a volatile organic compound in shower air (mg/m3) over the duration of the shower. The air concentration is estimated by a balance between the rate of chemical release from the shower and the rate of air exchange between the shower and the bathroom and the rest of the house. The calculations are based on the efficiency of the volatilization of trichloroethene from shower water as observed in model showers, as well as in several homes. The model was developed by Dr. Julian B. Andelman at the Graduate School of Public Health, University of Pittsburgh.

Ca = Cinf[1+((1/kts))(exp(-kts)-1))]

Where:

Cinf = [(E)(Fw)(Ct/1000)]/Fa k = Fa/Vb E = (ETCE)(H)/(HTCE)

The following defines the parameters used in the Andelman Shower Model:

Parameter .	<u>Constant</u>	<u>Units</u>	Description
Ca	Chem. Specific	mg/m3	Avg. Air Conc. over Shower Duration
Cinf	Chem. Specific	mg/m3	Asymptotic Conc. in Air
E	Chem. Specific	unitless	Efficiency of Release-Water to Air
Н	Chem. Specific	m3-atm/mol	Henry's Constant for Chemical (i)
Ct	Chem. Specific	ug/L	Conc. of Chemical (i) in Shower Water
ETCE	0.6	unitless	Efficiency of Release of TCE
HTCE	9.1E-03	m3-atm/mol	Henry's Constant for TCE
Fa	2.4	m3/min	Flow Rate of Air in the Shower
Vb	12	m3	Volume of Average Bathroom
k	0.2	1/min	Rate Constant
Fw	8	L/min	Flow Rate of Water in Shower
ts	12	min	Showering Time

Volatile Organic	H	E	Ct	Cinf	Ca
COPCs	(atm-m3/mol)		(ug/L)	(mg/m3)	(mg/m3)
Carbon Disulfide	1.23E-02	8.1E-01	5	1.4 E-0 2	0.01

Shower.WB1

GROUNDWATER INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION CTO-0312** MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL ADULT

CDI (mg/kg/d)= (CA*IR*ET*EF*ED)/(BW*AT)

ILCR = CDI*CSFi

HQ = CDI/RfDi

Parameter	Description	<u>Adult</u>	
CDI	Chronic daily intake (mg/kg/d)	CS	(Chemical Specific)
ILCR	Incremental lifetime cancer risk	CS	
CSFi	Oral cancer slope factor (1/(mg/kg/d))	CS	
HQ	Hazard quotient	CS	
RfDi	Oral reference dose (mg/kg/d)	CS	
С	Concentration of volatilized chemical in		
	shower air, Andelman Model (mg/m3)	CS	
IR	Inhalation rate (m3/hr)	0.6	
ET	Exposure time (hrs/d)	0.25	
EF	Exposure Frequency (d/yr)	350	
ED	Exposure Duration (yrs)	30	
BW	Body weight (kg)	70	
ATc	Averaging time, carcinogens (d)	25550	
ATn	Averaging time, noncarcinogens (d)	10950	

				Adult Residents							
				C	Carcinogens	;	Noncarcinogens				
	C C	CSFi	RfDi	CDI		% Contrib.	CDI		% Contrib.		
Parameter	(mg/m3)	1/(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	ILCR	Total ILCR	(mg/kg/d)	HQ	HI		
Carbon Disulfide	0.01	NA	0.1	8.8E-06			2.1E-05	2.1E-04	100.0%		
				Total ILCR:	0.0E+00	0.0%	HI	2.1E-04	100.0%		

NOTES:

NA - Toxicity criterion not available. -- Not applicable.

GROUNDWATER INHALATION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP **REMEDIAL INVESTIGATION CTO-0312** MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE RESIDENTIAL CHILD

CDI (mg/kg/d)= (CA*RR*ET*EF*ED)/(BW*AT)

ILCR = CDI*CSFi

HQ = CDI/RfDi

pecific)

				Young Child (ages 1-6 Yrs.)									
				C	arcinogens	J	No	ens					
	C	CSFi	RfDi	CDI		% Contrib.	CDI		% Contrib.				
Parameter	(mg/m3)	1/(mg/kg/d)	(mg/kg/d)	(mg/kg/d)	ILCR	Total ILCR	(mg/kg/d)	HQ	HI				
Carbon Disulfide	0.01	NA	0.1	8.2E-06			9.6E-05	9.6E-04	100.0%				
		L	I	Total ILCR:	0.0E+00	0.0%	HI:	9.6E-04	100.0%				

NOTES:

NA - Toxicity criterion not available. -- Not applicable.

EXAMPLE INGESTION OF SURFACE WATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from ingestion of surface water

Intake (mg/kg·day) =
$$\frac{C \times IR \times ET \times EF \times ED}{BW \times AT}$$

Where:

С		Contaminant concentration in surface water (mg/L)
CR	=	Contact rate (L/hr)
ET		Exposure time (hrs/event)
EF	=	Exposure frequency (events/year)
ED	=	Exposure duration (years)
BW	=	Body weight (kg)
AT		Averaging time (years)
DY	=	Days per year (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in surface water

Example Noncarcinogen: Aluminum

Intake $(mg/kg \cdot day) = \frac{25.8 mg/L \times 0.05 L/hr \times 2.6 hrs/event \times 48 events/yr \times 30 years}{70 kg \times 10,950 days}$

= 6.3E-03

$$Risk = \frac{6.3E - 03 \ mg/kg \cdot day}{1.0 \ mg/kg \cdot day} = 6.3E - 03$$

Re: Site 65 Current Residential Adult

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE ADULT RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
Cw = contaminant concentration in surface water (mg/l)	specific
CR = ingestion rate (Liter/hour)	0.05
ET = exposure time (hours/event)	2.6
EF = exposure frequency (events/yr)	48
ED = exposure duration (yrs)	30
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	30
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Average	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
		Rate	Time	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc.	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(Vhour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1		Risk	(days)	(mg/kg-day)	(mg/kg-day)		Risk
Aluminum	25.800	0.05	2.6	48	30	70	25550	2.7E-03	0.0E+00	0.0E+00	0%	10950	6.3E-03	1.0E+00	6.3E-03	41%
Barium	0.069	0.05	2.6	48	30	70	25550	7.3E-06	0.0E+00	0.0E+00	0%	10950	1.7E-05	7.0E-02	2.4E-04	2%
Copper	0.041	0.05	2.6	48	30	70	25550	4.3E-06	0.0E+00	0.0E+00	0%	10950	1.0E-05	3.7E-02	2.7E-04	2%
iron	7,890	0.05	2.6	48	30	70	25550	8.3E-04	0.0E+00	0.0E+00	0%	10950	1.9E-03	3.0E-01	6.4E-03	42%
Lead	0.046	0.05	2.6	48	30	70	25550	4.8E-06	0.0E+00	0.0E+00	0%	10950	1.1E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	30	70	25550	9.3E-06	0.0E+00	0.0E+00	0%	10950	2.2E-05	2.3E-02	9.4E-04	6%
Vanadium	0.026	0.05	2.6	48	30	70	25550	2.7E-06	0.0E+00	0.0E+00	0%	10950	6.4E-06	7.0E-03	9.1E-04	6%
Zinc	0.144	0.05	2.6	48	30	70	25550	1.5E-05	0.0E+00	0.0E+00	0%	10950	3.5E-05	3.0E-01	1.2E-04	1%
TOTAL										0.0E+00					1.5E-02	

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
Cw = contaminant concentration in surface water	(mg/l)
CR = contact rate (Liter/hour)	0.05
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Averaging	Carc	Cancer Slop	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogen	Percent
	Carcinogen	Rate	Time	Frequency	Duration	Weight	Carc. Time	Dose	Factor	Risk	Carcinogenic	Noncarc	Dose	Dose	Risk	Noncarcinogeni
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-da	(mg/kg-day)-	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child		Child			Child
Aluminum	25.800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	6	15	25550	6.8E-06	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
Iron	7.890	0.05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	6	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zinc	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL										0.0E+00					7.1E-02	

SURFACE WATER INGESTION EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
Cw = contaminant concentration in surface water (mg/l)	
CR = contact rate (Liter/hour)	0.05
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW ≈ child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Averaging	Care	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
1	Carcinogen	Rate	Time	Frequency	Duration	Weight	Carc. Time	Dose	Factor	Risk	Carcinogenic	Noncarc	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child		Child			Child
Aluminum	25.800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	6	15	25550	6.8E-06	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
iron	7.890	0.05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	6	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zinc	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL										0.0E+00					7.1E-02	

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMPU LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	I	NPUT
Cw = contaminant concentration in surface water (mg/l)	
IR = ingestion rate (Liter/hour)		0.05
ET = exposure time (hours/event)		2.6
EF = exposure frequency (events/yr)		48
ED = exposure duration (yrs)		30
BW = body weight (kg)		70
ATc = averaging time for carcinogen (yr)		70
ATnc = averaging time for noncarcinogen (yr)		30
DY = days per year (days)		365
CSF = cancer slope factor (mg/kg-day)-1	specific	
RfD = reference dose (mg/kg-day)	specific	

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Average	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
	(mg/l)	Rate	Time	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc.	Dose	Dose	Risk	Noncarcinogenic
		(i/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1		Risk	(years)	(mg/kg-day)	(mg/kg-day)		Risk
Aluminum	25.800	0.05	2.6	48	30	70	25550	2.7E-03	0.00E+00	0.0E+00	0%	10950	6.3E-03	1.00E+00	6.3E-03	41%
Barium	0.069	0.05	2.6	48	30	70	25550	7.3E-06	0.00E+00	0.0E+00	0%	10950	1.7E-05	7.00E-02	2.4E-04	2%
Copper	0.041	0.05	2.6	48	30	70	25550	4.3E-06	0.00E+00	0.0E+00	0%	10950	1.0E-05	3.71E-02	2.7E-04	2%
Iron	7.890	0.05	2.6	48	30	70	25550	8.3E-04	0.00E+00	0.0E+00	0%	10950	1.9E-03	3.00E-01	6.4E-03	42%
Lead	0.046	0.05	2.6	48	30	70	25550	4.8E-06	0.00E+00	0.0E+00	0%	10950	1.1E-05	0.00E+00	0.0E+00	0%
Manganese (water)		0.05	2.6	48	30	70	25550	9.3E-06	0.00E+00	0.0E+00	0%	10950	2.2E-05	2.30E-02	9.4E-04	6%
Vanadium	0.026	0.05	2.6	48	30	70	25550	2.7E-06	0.00E+00	0.0E+00	0%	10950	6.4E-06	7.00E-03	9.1E-04	6%
Zinc	0.144	0.05	2.6	48	30	70	25550	1.5E-05	0.00E+00	0.0E+00	0%	10950	3.5E-05	3.00E-01	1.2E-04	1%
TOTAL										0.0E+00					1.5E-02	

SURFACE WATER INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from the ingestion of surface water is calculated as follows:

Intake (mg/kg-day) = Cw * CR * ET * EF * ED/BW * ATc or ATnc * DY

Where:	INPUT
Cw = contaminant concentration in surface water (mg/l)	
CR = contact rate (Liter/hour)	0.05
ET = child exposure time (hours/event)	2.6
EF = child exposure frequency (events/yr)	48
ED = child exposure duration (yrs)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	specific
RfD = reference dose (mg/kg-day)	specific

COPC	Concentration	Contact	Exposure	Exposure	Exposure	Body	Averaging	Carc	Cancer Slope	Carcinogenic	Percent	Averaging Time	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Rate	Time	Frequency	Duration	Weight	Carc. Time	Dose	Factor	Risk	Carcinogenic	Noncarc	Dose	Dose	Risk	Noncarcinogenic
	(mg/l)	(l/hour)	(hrs/event)	(events/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Child	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
			Child	Child	Child	Child		Child			Child		Child			Child
Aluminum	25.800	0.05	2.6	48	6	15	25550	2.5E-03	0.0E+00	0.0E+00	0%	2190	2.9E-02	1.0E+00	2.9E-02	41%
Barium	0.069	0.05	2.6	48	8	15	25550	6.8E-06	0.0E+00	0.0E+00	0%	2190	7.9E-05	7.0E-02	1.1E-03	2%
Copper	0.041	0.05	2.6	48	6	15	25550	4.0E-06	0.0E+00	0.0E+00	0%	2190	4.7E-05	3.7E-02	1.3E-03	2%
iron	7.890	0.05	2.6	48	6	15	25550	7.7E-04	0.0E+00	0.0E+00	0%	2190	9.0E-03	3.0E-01	3.0E-02	42%
Lead	0.046	0.05	2.6	48	6	15	25550	4.5E-06	0.0E+00	0.0E+00	0%	2190	5.2E-05	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	0.05	2.6	48	6	15	25550	8.6E-06	0.0E+00	0.0E+00	0%	2190	1.0E-04	2.3E-02	4.4E-03	6%
Vanadium	0.026	0.05	2.6	48	6	15	25550	2.6E-06	0.0E+00	0.0E+00	0%	2190	3.0E-05	7.0E-03	4.3E-03	6%
Zinc	0.144	0.05	2.6	48	6	15	25550	1.4E-05	0.0E+00	0.0E+00	0%	2190	1.6E-04	3.0E-01	5.5E-04	1%
TOTAL			I							0.0E+00					7.1E-02	

EXAMPLE DERMAL CONTACT WITH SURFACE WATER CALCULATIONS SITE 65 - ENGINEER AREA DUMP CONTRACT TASK ORDER 0312

Purpose: Estimate intake/risk from dermal contact with surface water

Intake (mg/kg·day) = $\frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}$

Where:

С	=	Contaminant concentration in groundwater (mg/L)
SA	=	Exposed skin surface available for contact (cm ²)
PC	=	Permeability constant (cm/hr)
ET	=	Exposure time (hr/day)
EF	=	Exposure frequency (days/year)
ED	=	Exposure duration (years)
CF	=	Conversion factor (1 L/1,000 cm ³)
BW	=	Body weight (kg)
AT _c	=	Averaging time carcinogen (days)
AT _{ne}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No Carcinogenic COPCs in Surface Water

Example Noncarcinogen: Aluminum

 $Intake (mg/kg \cdot day) = \frac{25.8 mg/L x 8.300 cm^2 x 1.0 E - 03 cmhr x 2.6 hr/day x 48 days/yr x 30 yr s x 1 L/1,000 cm^3}{70 kg x 10,950 days}$

= 1.0E-03

$$Risk = \frac{1.0E - 03 \ mg/kg day}{2.0E - 01 \ mg/kg day} = 5.2E - 03$$

Re: Site 65 Current Residential Adult

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE ADULT RESIDENT

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Vhere:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = skin surface available for contact (cm2)	8300
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = exposure time (hours/day)	2.6
EF = exposure frequency (days/yr)	48
ED = exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	30
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc	Percent
	(mg/l)	Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
		(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor		Risk	(days)	(mg/kg-day)	Dose	1	Risk
		• •			1.1.1						(mg/kg-day)-1					(mg/kg-day)		
Aluminum	25.800	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.5E-04	0.0E+00	0.0E+00	0%	10950	1.0E-03	2.0E-01	5.2E-03	42%
Barium	0.069	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.2E-06	0.0E+00	0.0E+00	0%	10950	2.8E-06	1.4E-02	2.0E-04	2%
Copper	0.041	8300	1.0E-03	2.6	48	30	0.001	70	25550	7.1E-07	0.0E+00	0.0E+00	0%	10950	1.7E-06	7.4E-03	2.2E-04	2%
Iron	7.890	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.4E-04	0.0E+00	0.0E+00	0%	10950	3.2E-04	6.0E-02	5.3E-03	42%
Lead	0.046	8300	4.0E-06	2.6	48	30	0.001	70	25550	3.2E-09	0.0E+00	0.0E+00	0%	10950	7.4E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.5E-06	0.0E+00	0.0E+00	0%	10950	3.6E-06	4.6E-03	7.8E-04	6%
Vanadium	0.026	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.6E-07	0.0E+00	0.0E+00	0%	10950	1.1E-06	1.4E-03	7.6E-04	6%
Zinc	0.144	8300	6.0E-04	2.6	48	30	0.001	70	25550	1.5E-06	0.0E+00	0.0E+00	0%	10950	3.5E-06	6.0E-02	5.8E-05	0%
TOTAL												0.0E+00					1.3E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Vhere:	INPUTS
CW = contaminant concentration in water (mg/l)	
SA = skin surface available for contact (cm2)	8300
PC = contaminant specific dermal permability (cm/hr	Specific
ET = exposure time (hours/day)	2.6
EF = exposure frequency (days/yr)	48
ED = exposure duration (years)	30
CF = volumetric conversion factor for water (1liter/1	0.001
BW = body weight (kg)	70
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (vr)	30
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermai	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc.	Percent
	Carcinogen	Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor		Risk	(days)	(mg/kg-day)	Dose		Risk
											(mg/kg-day)-1					(mg/kg-day)		
Aluminum	25.800	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.5E-04	0.00E+00	0.0E+00	0%	10950	1.0E-03	2.00E-01	5.2E-03	42%
Barium	0.069	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.2E-06	0.00E+00	0.0E+00	0%	10950	2.8E-06	1.40E-02	2.0E-04	2%
Copper	0.041	8300	1.0E-03	2.6	48	30	0.001	70	25550	7.1E-07	0.00E+00	0.0E+00	0%	10950	1.7E-06	7.42E-03	2.2E-04	2%
Iron	7.890	8300	1.0E-03	2.6	48	30	0.001	70	25550	1.4E-04	0.00E+00	0.0E+00	0%	10950	3.2E-04	6.00E-02	5.3E-03	42%
Lead	0.046	8300	4.0E-06	2.6	48	30	0.001	70	25550	3.2E-09	0.00E+00	0.0E+00	0%	10950	7.4E-09	0.00E+00	0.0E+00	0%
Manganese (water)		8300	1.0E-03	2.6	48	30	0.001	70	25550	1.5E-06	0.00E+00	0.0E+00	0%	10950	3.6E-06	4.60E-03	7.8E-04	6%
Vanadium	0.026	8300	1.0E-03	2.6	48	30	0.001	70	25550	4.6E-07	0.00E+00	0.0E+00	0%	10950	1.1E-06	1.40E-03	7.6E-04	6%
Zinc	0.144	8300	6.0E-04	2.6	48	30	0.001	70	25550	1.5E-06	0.00E+00	0.0E+00	0%	10950	3.5E-06	6.00E-02	5.8E-05	0%
TOTAL												0.0E+00					1.3E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUTS
CW = contaminant concentration in water (mg/l)	Specific
SA = child skin surface available for contact (cm2)	2100
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	2.6
EF = child exposure frequency (days/yr)	48
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1liter/1000 cm3)	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermai	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average Noncarc Time	Noncarc Dose	Dermal Adjust. Reference	Noncarc. Risk	Percent Noncarcinogenic
	(8)	Area (cm2)	Permeability	Time	Frequency	Duration (vears)	Conversion (L/m3)	Weight (kg)	Carc Time (days)	Dose (mg/kg-day)	Slope Factor	Risk Child	Carcinogenic Risk	(days)	(mg/kg-day)	Dose	Child	Risk
	(mg/l)	(cm2) Child	(cm/hr)	(hours/day) Child	(days/yr) Child	Child	(Units)	Child	(4434)	Child	(mg/kg-day)-1		Child	(,-,	Child	(mg/kg-day)		Child
Aluminum	25.800	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-04	0.0E+00	0.0E+00	0%	2190	1.2E-03	2.0E-01	6.2E-03	42%
Barium	0.069	2100	1.0E-03	2.6	48	6	0.001	15	25550	2.8E-07	0.0E+00	0.0E+00	0%	2190	3.3E-06	1.4E-02	2.4E-04	2%
Copper	0.041	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.7E-07	0.0E+00	0.0E+00	0%	2190	2.0E-06	7.4E-03	2.7E-04	2%
Iron	7.890	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.2E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	6.0E-02	6.3E-03	42%
Lead	0.046	2100	4.0E-06	2.6	48	6	0.001	15	25550	7.5E-10	0.0E+00	0.0E+00	0%	2190	8.8E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.6E-07	0.0E+00	0.0E+00	0%	2190	4.2E-06	4.6E-03	9.2E-04	6%
Vanadium	0.026	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-07	0.0E+00	0.0E+00	0%	2190	1.3E-06	1.4E-03	9.0E-04	6%
Zine	0.144	2100	6.0E-04	2.6	48	ĥ	0.001	15	25550	3.5E-07	0.0E+00	0.0E+00	0%	2190	4.1E-06	6.0E-02	6.9E-05	0%
TOTAL	0.144		0.00.01									0.0E+00					1.5E-02	

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from dermal contact with surface water is calculated as follows:

Intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUTS
CW = contaminant concentration in water (mg/l)	Specific
SA = child skin surface available for contact (cm2)	2100
PC = contaminant specific dermal permability (cm/	Specific
ET = child exposure time (hours/day)	2.6
EF = child exposure frequency (days/yr)	48
ED = child exposure duration (years)	6
CF = volumetric conversion factor for water (1liter/1	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
AThc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc.	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)		(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child		Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	25.800	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-04	0.0E+00	0.0E+00	0%	2190	1.2E-03	2.0E-01	6.2E-03	42%
Barium	0.069	2100	1.0E-03	2.6	48	6	0.001	15	25550	2.8E-07	0.0E+00	0.0E+00	0%	2190	3.3E-06	1.4E-02	2.4E-04	2%
Copper	0.041	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.7E-07	0.0E+00	0.0E+00	0%	2190	2.0E-06	7.4E-03	2.7E-04	2%
Iron	7.890	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.2E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	6.0E-02	6.3E-03	42%
Lead	0.046	2100	4.0E-06	2.6	48	6	0.001	15	25550	7.5E-10	0.0E+00	0.0E+00	0%	2190	8.8E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	2100	1.0E-03	2.6	48	6	0.001	15	25550	3.6E-07	0.0E+00	0.0E+00	0%	2190	4.2E-06	4.6E-03	9.2E-04	6%
Vanadium	0.026	2100	1.0E-03	2.6	48	6	0.001	15	25550	1.1E-07	0.0E+00	0.0E+00	0%	2190	1.3E-06	1.4E-03	9.0E-04	6%
Zinc	0.144	2100	6.0E-04	2.6	48	6	0.001	15	25550	3.5E-07	0.0E+00	0.0E+00	0%	2190	4.1E-06	6.0E-02	6.9E-05	0%
TOTAL												0.0E+00					1.5E-02	1

SURFACE WATER DERMAL CONTACT EXPOSURE ASSESSMENT - CT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEURE, NORTH CAROLINA FUTURE CHILD RESIDENT

The intake from dermal contact with surface water is calculated as follows:

intake (mg/kg-day) = Cw * SA * PC * ET * EF * ED * CF/BW * ATc or ATnc * DY

Where:	INPUTS
CW = contaminant concentration in water (mg/l)	Specific
SA = child skin surface available for contact (cm2)	1745
PC = contaminant specific dermal permability (cm/hr)	Specific
ET = child exposure time (hours/day)	2.6
EF = child exposure frequency (days/yr)	48
ED = child exposure duration (years)	8
CF = volumetric conversion factor for water (1iiter/1000 c	0.001
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (yr)	70
ATnc = averaging time for noncarcinogen (yr)	6
DY = days per year (days)	365
CSF = cancer slope factor (mg/kg-day)-1	Specific
RfD = reference dose (mg/kg-day)	Specific

COPC	Concentration	Surface	Dermal	Exposure	Exposure	Exposure	Volumetric	Body	Averaging	Carc	Dermal Adjust.	Carcinogenic	Percent	Average	Noncarc	Dermal Adjust.	Noncarc.	Percent
		Area	Permeability	Time	Frequency	Duration	Conversion	Weight	Carc Time	Dose	Slope	Risk	Carcinogenic	Noncarc Time	Dose	Reference	Risk	Noncarcinogenic
	(mg/l)	(cm2)	(cm/hr)	(hours/day)	(days/yr)	(years)	(L/m3)	(kg)	(days)	(mg/kg-day)	Factor	Child	Risk	(days)	(mg/kg-day)	Dose	Child	Risk
		Child		Child	Child	Child	1. A.	Child		Child	(mg/kg-day)-1		Child		Child	(mg/kg-day)		Child
Aluminum	25.800	1745	1.0E-03	2.6	48	6	0.001	15	25550	8.8E-05	0.0E+00	0.0E+00	0%	2190	1.0E-03	2.0E-01	5.1E-03	42%
Barium	0.069	1745	1.0E-03	2.6	48	6	0.001	15	25550	2.4E-07	0.0E+00	0.0E+00	0%	2190	2.8E-06	1.4E-02	2.0E-04	2%
Copper	0.041	1745	1.0E-03	2.6	48	6	0.001	15	25550	1.4E-07	0.0E+00	0.0E+00	0%	2190	1.6E-06	7.4E-03	2.2E-04	2%
Iron	7.890	1745	1.0E-03	2.6	48	6	0.001	15	25550	2.7E-05	0.0E+00	0.0E+00	0%	2190	3.1E-04	6.0E-02	5.2E-03	42%
Lead	0.046	1745	4.0E-06	2.8	48	8 -	0.001	15	25550	8.2E-10	0.0E+00	0.0E+00	0%	2190	7.3E-09	0.0E+00	0.0E+00	0%
Manganese (water)	0.088	1745	1.0E-03	2.6	48	6	0.001	15	25550	3.0E-07	0.0E+00	0.0E+00	0%	2190	3.5E-06	4.6E-03	7.6E-04	6%
Vanadium	0.026	1745	1.0E-03	2.6	48	6	0.001	15	25550	8.9E-08	0.0E+00	0.0E+00	0%	2190	1.0E-06	1.4E-03	7.4E-04	5%
Zinc	0.144	1745	6.0E-04	2.6	48	6	0.001	15	25550	2.9E-07	0.0E+00	0.0E+00	0%	2190	3,4E-06	6.0E-02	5.7E-05	0%
TOTAL												0.0E+00					1.2E-02	

EXAMPLE FISH INGESTION CALCULATIONS SITE 65 - ENGINEER AREA DUMP **CONTRACT TASK ORDER 0312**

Purpose: Estimate intake/risk from ingestion of fish

$$Intake (mg/kg day) = \frac{C \times CF \times EF \times ED \times IR}{BW \times AT}$$

Where:

	С	= Contaminant concentration in fish (mg/kg)
FI	=	Fraction ingested (unitless)
EF	=	Exposure frequency (meals/year)
ED	=	Exposure duration (years)
IR	=	Ingestion rate (kg/meal)
BW	=	Body weight (kg)
AT _c	=	Averaging time carcinogen (days)
AT_{nc}	=	Averaging time noncarcinogen (days)

Risks:

Carcinogens = Intake (mg/kg·day) x CSF (mg/kg·day)⁻¹ Noncarcinogens = Intake (mg/kg·day)/RfD (mg/kg·day)

Example Carcinogen: No carcinogenic COPCs in fish tissue

Example Noncarcinogen: Mercury

0.3 mg/kg x 0.145 kg/meal x 48 meals/yr x 30 yrs x 1.0 Intake (mg/kg·day) = 70 kg x 10,950 days

= 8.2E-05

$$Risk = \frac{8.2E - 05 \ mg/kg day}{1.0E - 04 \ mg/kg day} = 8.2E - 01$$

Re: Site 65 Current Adult Fisherman

FISH INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - ADULT RECEPTOR

Intake (mg/kg-day) = CF * IR * FI * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
CF = contaminant concentration in fish (mg/kg)	
IR = adult ingestion rate (kg/meal)	0.145
FI = fraction ingested from contaminated source (unitless)	1
EF = adult exposure frequency (meals/yr)	48
ED = adult exposure duration (years)	30
BW = adult body weight (kg)	70
ATc = averaging time for carcinogen (years)	70
ATnc = averaging time for noncarcinogen (years)	30
DY = days per year (days/yr)	365

COPC	Concentration	Ingestion	Fraction	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
	Carcinogen	Rate	Ingestion	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	(kg/meal)	(%)	(meals/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Adult	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Adult	Risk
		Adult		Adult	Adult	Adult		Adult			Adult		Adult			Adult
Mercury	0.300	0.145	1	48	30	70	25550	3.5E-05	0.0E+00	0.0E+00	0%	10950	8.2E-05	1.0E-04	8.2E-01	69%
Thallium	0.11	0.145	1	48	30	70	25550	1.3E-05	0.0E+00	0.0E+00	0%	10950	3.0E-05	8.0E-05	3.7E-01	<u>31%</u>
TOTAL						_				0.0E+00					1.2E+00_	

FISH INGESTION EXPOSURE ASSESSMENT SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION CTO-0312 MCB CAMP LEJEUNE, NORTH CAROLINA FISHERMAN - CHILD RECEPTOR

Intake (mg/kg-day) = CF * IR * FI * EF * ED/BW * ATc or ATnc * DY

Where:	INPUTS
CF = contaminant concentration in fish (mg/kg)	
IR = child ingestion rate (kg/meal)	0.145
FI = fraction ingested from contaminated source (unitless)	1
EF = child exposure frequency (meals/yr)	48
ED = child exposure duration (years)	6
BW = child body weight (kg)	15
ATc = averaging time for carcinogen (years)	70
ATnc = averaging time for noncarcinogen (years)	6
DY = days per year (days/yr)	365

COPC	Concentration	Ingestion	Fraction	Exposure	Exposure	Body	Average	Carc	Slope	Carcinogenic	Percent	Average	Noncarc	Reference	Noncarcinogenic	Percent
		Rate	ingestion	Frequency	Duration	Weight	Carc Time	Dose	Factor	Risk	Carcinogenic	Noncarc Time	Dose	Dose	Risk	Noncarcinogenic
	(mg/kg)	(kg/meal)	(%)	(days/yr)	(years)	(kg)	(days)	(mg/kg-day)	(mg/kg-day)-1	Adult	Risk	(days)	(mg/kg-day)	(mg/kg-day)	Child	Risk
		Child		Child	Child	Child		Child			Child		Child	1		Child
Mercury	0.300	0.145	1	48	6	15	25550	3.3E-05	0.0E+00	0.0E+00	0%	2190	3.8E-04	1.0E-04	3.8E+00	69%
Thallium	0.11	0.145	1	48	6	15	25550	1.2E-05	0.0E+00	0.0E+00	0%	2190	1.4E-04	8.0E-05	1.7E+00	31%
TOTAL										0.0E+00					5.6E+00	

ini Sector de la companya de la companya

APPENDIX U TERRESTRIAL REFERENCE VALUES AND CDI ECOLOGICAL RISK SPREADSHEETS

TOXICITY DATA USED TO CALCULATE TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Chemical	Substitute Chemical Used	Cattle (mg/kg/day)		Poultry (mg/kg/day)	Rabbit (mg/kg/day)		Dog (mg/kg/day)	Rat (mg/kg/day)		Mouse (mg/kg/day)		Guinea Pig (mg/kg/day)	Mink (mg/kg/day)
Aluminum		5	(1)	10 (1)	11.61	(1)	15 (1)	NA		1.93	(60)	NA	(Ing/kg/day) NA
Antimony		NA	• •	NA	4.06	(1)	NA	0.035	(12)	NA	(00)	NA	NA
Arsenic		0.25	(1)	5.135 (61) Mallard	2.90	(i)	NA	NA	()	0.1261	(13)	NA	NA
Barium		0.1	(1)	1 (1)	1.16	(i)	NA	0.25	(4)	NA	(19)	NA	NA
Beryllium		NA	(-)	NA	NA	1.1	NA	0.54	(4)	NA		NA	
Cadmium		0.0025	(1)	1.45 (63) Mailard	0.03	(1)	0.075 (14)	0.004	(15)	NA			NA
Chromium		5	(i)	50 (1)	58.03	(i)	NA	2.41		NA		NA	NA
Cobalt		0.05	(i)	0.5 (1)	0.58	(1)	NA	2.41 NA	(5)	NA NA	-	NA	NA
Copper		0.5	Ö	15 (1)	11.61	(i)	NA					NA	NA
Iron		5	(i)	50 (1)	29.02		NA	NA		NA		NA	12.9 (17)
Lead		0.15	(1)	3.85 (65) A. kestr	1.74	(1)	NA	NA	(0)	NA		NA	NA
Manganese		0.13	(24)	100 (1)	23.21	(1)	NA	8	(6)	NA		NA	NA
Mercury		0.01	(1)	0.1 (1)	0.12	(1)	NA	8.8	(66)	NA		NA	NA
Molydenum		NA	(0	NA	NA	(1)	NA	0.32	(18)	NA		NA	NA
Nickel		0.25	(1)			(4)		0.02	(82)	NA		NA	NA
Selenium		0.25	(1) (1)	15 (1) 0 5 (07) Mallaud	2.90	(1)	25 (2)	5	(2)	NA		NA	NA
Silver		NA	(1)	0.5 (67) Mallard	0.12	(1)	NA	0.04	(19)	NA		NA	NA
Thallium		NA		5 (1) NA	NA		NA	NA	<i></i>	0.181	(20)	NA	NA
Vanadium		0.25	(4)		NA	(4)	NA	0.023	(54)	NA		NA	NA
Zinc			(1)	11.38 (68) Mallard	0.06	(1)	NA	0.65	(58)	NA		NA	NA
		2.5	(1)	50 (1)	29.02	(1)	1 (3)	160	(69)	NA		NA	NA
Cyanide		NA		4.5 (21)	NA		0.375 (22)	10.8	(23)	NA		NA	NA
Acenaphthene		NA		NA	NA		NA	17.5	(56)	NA		NA	NA
Acenaphthylene		NA		NA	NA		NA	17.57		NA		NA	NA
Anthracene		NA		NA	NA		NA	NA		100	(33)	NA	NA
Benzo(a)anthracene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1	• •	NA	NA
Benzo(b)fluoranthene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Benzo(k)fluoranthene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Benzo(ghi)perylene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Benzo(g,h,i)perylene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Benzo(a)pyrene		NA		NA	NA		NA	NA		1	(7)	NA	NA
beta-BHC		NA		NA	NA		NA	5	(51)	NÁ	.,	NA	NA
gamma-BHC	(beta-BHC)	NA		NA	NA		NA	5	(51)	NA		NA	NA
Bis(2-ethylhexyl)phthalate		NA		1.11 (16) Ringed	NA		NA	NA	•••	NA		0.1833 (11	
Butylbenzylphthalate		NA		NA	NA		NA	15.9	(52)	NA		NA	NA
Carbazole	(Benzo(a)pyrene	NA		NA	NA		NA	NA	• •	. 1		NA	NA
Chrysene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Dibenzofuran	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Dibenzo(a,h)anthracene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		1		NA	NA
Dibenz(a,h)anthracene	(Benzo(a)pyrene	NA		NA	NA		NA	NA		í		NA	NA
Diethylphthalate		NA		NA	NA		NA	NA		4583	(53)	NA	NA
2,4-Dimethylphenol		NA		NA	NA		NA	NA		5	(85)	NA	NA
Di-n-butylphthalate		NA		0.11 (16) Ringed	NA		NA	125	(63)	NA	• •	NA	NA
Di-n-octylphthalate		NA		NA	NA		NA	17.5	(79)	NA		NA	NA
2,4-Dinitrophenol		NA		NA	NA		1 (86)	20 (NA		NA	NA
2.6-Dinitrotoluene		NA		NA	NA		0.4 (84)	NA		NA		NA	NA
Fluoranthene		NA		NA	NA		NA	NA		12.5	(8)	NA	NA
Fluorene		NA		NA	NA		NA	12.5	(56)	NA	(9)	NA	NA
Indeno(1,2,3-cd)pyrene	(Benzo(a)pyrene	NA		NA	NA		NA	NA NA	(00)	1		NA	NA
2-Methylnaphthalene	(Naphthalene)	NA		NA	NA		NA	41		NA		NA	NA
Naphthalene	(NA		NA	NA		NA	41	(9)	NA			
Nitrobenzene		NA		NA	NA		NA	0.25	(9) (80)	NA		NA NA	NA
n-Nitrosodiphenylamine		NA		NA	NA		NA	0.25					NA
Phenanthrene	(Naphthalene)	NA		NA	NA		NA		(81)	NA		NA	NA
Phenol	(naphinalene)	NA		NA	NA		NA	41	<i>(67</i>)	NA		NA	NA
Pyrene		NA		NA	NA		NA	6 NA	(57)	NA 7.5	(10)	NA	NA
. ,		110			1173		11/5	A/I		7.5	(10)	NA	NA

TOXICITY DATA USED TO CALCULATE TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Chemical	Cattle (mg/kg/day)		Poultry (mg/kg/day)	Rabbit (mg/kg/day)		Dog (mg/kg/day)		Rat (mg/kg/day)		Mouse (mg/kg/day)		Guinea Pig (mg/kg/day)	Mink (mg/kg/day)
Aldrin	0.5	(24)	NA	NA		0.025		0.025	(77)	(ing/ig/day) NA		(ing/kg/day) NA	NA
Alpha-chlordane	0.5	(24)	2,14 (70) Blackbi	NA		0.075		0.055	(49)	NA		NA	NA
Gamma-chlordane		(24)	2.14 (70) Blackbi	NA		0.075		0.055	(49)	NA		NA	NA
Dieldrin	0.5	(24)	0.03 (71) Mallard	NA		0.005		0.005		NA		NA	NA
4.4'-DDD	NA	(24)	0.088 (DDT)	NA		NA	(23)	0.8	DDT	NA		NA	NA
4,4-DDE	NA		0.088 (24) Quail	NA		NA		0.8	(47)	NA		NA	NA
4,4-DDT	NA		0.088 (24) Quali	NA		NA		0.8	(47)	NA		NA	NA
Endosulfan	NA		10 (72) Partridg	NA		0.57	(26)	0.6	(26)	NA		NA	NA
Endosulfan II	NA		10 (72) Partridg	NA		0.57	(26)	0.6	(26)	NA		NA	NA
Endosulfan sulfate	NA		10 (72) Partridg	NA			(26)	0.6	(26)	NA		NA	NA
Endrin	NA		0.3 (73) Mailard	NA		0.025		0.25	(28)	NA		NA	NA
Endrin aldehyde	NA		0.3 (73) Mailard	NA		0.025		0.25	(28)	NA		NA	NA
Endrin ketone	NA		0.3 (73) Mailard	NA		0.025		0.25	(28)	NA		NA	NA
Heptachlor	NA		NA	NA		0.025 NA	(21)	0.15	(45)	NA		NA	0.057 (29)
Heptachlor Epoxide	NA		NA	NA		0.000125	(24)	NA	(10)	NA		NA	0.057 (25) NA
Aroclor-1221	NA		NA	NA		0.000 125 NA	(27)	3.5	(30)	NA		NA	NA
Aroclor-1221	NA		0.41 (78) Owl	NA		NA		0.15	(31)	NA		NA	NA
Aroclor-1260	NA		NA	NA		NA		0.005	(32)	NA		NA	NA
Aroclor-1254	NA		0.18 (76) Pheasa	1	(75)	NA		NA NA	(52)	NA		NA	0.1 (50)
Aroclor-1248	NA		NA	0.28	(77)	NA		NA		0.13	(62)	NA	NA
Methylene chloride	NA		NA	NA	V17	NA		5.85	(34)	NA	(02)	NA	NA
Carbon disulfide	NA		NA	1.1	(35)	NA		5.05 NA	(34)	NA		NA	NA
1.1-Dichloroethene	NA		NA	NA	(00)	NA		28	(59)	NA		NA	NA
1,2-Dichloroethene (total)	NA		NA	NA		NA		5		NA		NA	NA
Chloroform	NA		NA	NA			(36)	38	(37)	NA		NA	NA
2-Butanone	NA		NA	NA		ŇĂ	(00)	NĂ	(0.7	NA		NA	NA
1.1.1-Trichloroethane	NA		NA	NA		NA		NA		1000	(38)	NA	NA
Trichloroethene	NA		NA	NA		NA		100	(39)	NA	(00)	NA	NA
1,1,2-Trichloroethane	NA		NA	NA		NA		NA	(00)	0.39	(40)	NA	NA
Benzene	NA		NA	NA		NA		0.1	(41)	NA	()	NA	NA
1,1,2,2-Tetrachloroethane	NA		NA	NA		NA		76	(85)	NA		NA	NA
Tetrachloroethene	NA		NA	NA		NA		1.4	(42)	NA		NA	NA
Toluene	NA		NA	NA		NA		22.3	(38)	NA		NA	NA
Ethylbenzene	NA		NA	NA		NA		9.71	(41)	NA		NA	NA
Xylenes	NA		NA	NA		NA		179	(43)	NA		NA	NA
Xylenes (total)	NA		NA	NA		NA		179	(43)	NA		NA	NA
Vinyl chloride	NA		NA	NA		NA		0.17	(83)	NA		NA	NA
Acetone	NA		NA	NA		NA		10	(46)	NA		NA	NA
									·/				

(1) NAS, 1980	(19) Halverson et.al., 1966	(37) Jorgenson et.al., 1985	(55) NCI, 1978	(73) Spann, et.al.,
(2) Ambrose et.al., 1976	(20) Rungby and Dansher, 1984	(38) Lane, et.al., 1982	(56) USEPA, 1989b	(74) Dow, 1958
(3) Drinker et. al., 1927	(21) Gomez et.al., 1983, 1988	(39) NTP, 1985a	(57) NTP, 1983a	(75) Villeneuve, et
(4) Schroder and Mitchner, 1975a,	(22) USEPA, 1980	(40) White et.al., 1985	(58) Schroeder et.al., 1970	(76) Dahlgren, et.
(5) Mackenzie et.al., 1958	(23) Howard and Hanzal, 1955	(41) Wolf et.al., 1956	(59) Nitchke, et.al., 1983	(77) FAO/WHO, 1
(6) Azar et.al., 1973	(24) Ford et.al., 1991	(42) Buban, 1985	(60) Ondreicka, et.al., 1966	(78) McLane and I
	(25) Walker et.al., 1969	(43) NTP, 1986a	(61) USFWS, 1964	(79) Piekacz, 1971
(8) USEPA, 1988a	(26) Hoechst, 1989	(44) Quast et.al., 1983	(62) Thomas and Hinsdill, 1980	(80) CIIT, 1984
(9) Schmall, 1955	(27) Vesicol, 1969	(45) Vesicol, 1955	(63) White and Finely, 1978	(81) NCI, 1979
(10) USEPA, 1989a	(28) Treon et.al., 1955	(46) USEPA, 1986a	(64) Smith, et.al., 1953	(82) Jeter et.al., 1
(11) Lamb, et.al., 1987	(29) Auterich et.al., 1990	(47) Fitzhugh, 1948	(65) Pattee, 1984	(83) Til et.al., 1983
(12) Schroeder et.al., 1976	(30) Wasserman and Culos, 1973	(48) WHO, 1984 and NRCC, 1975	(66) Laskey, et.al., 1982	(84) Lee et.al., 19
(13) Schroeder and Mitchner, 197	(31) Bruckner et.al., 1974	(49) Vesicol, 1983	(67) Heinz, et.al., 1987	(85) USEPA, 1989
(14) Loser and Lorke, 1977	(32) Byrne et.al., 1988	(50) Ringer, 1983	(68) White and Dieter, 1978	(86) Tainter et.al.,
(15) Kopp et.al., 1982	(33) USEPA, 1989b	(51) Ito et.al., 1975	(69) Schlicker and Cox, 1968	(87) Tainter et.al.
(16) Peakall et.al., 1974	(34) NCA., 1982	(52) NTP, 1985b	(70) Stickel, e.al., 1983	
(17) Aulerich et.al., 1982	(35) Hardin et.al., 1981	(53) McClane and Hughs, 1980	(71) Nebeker et.al., 1992	
(18) Fitzhugh et.al., 1950	(36) Heywood et.al., 1979	(54) USEPA, 1986b	(72) Abiola, 1992	
	• • •	• •	• •	

1

(73) Spann, et.al., 1986 e, et.al., 1972 et.al., 1972 0, 1978 nd Hughes, 1980 971 , 1954 983 1976 89c al., 1934 al., 1938

BODY WEIGHTS FOR TERRESTRIAL REFERENCE VALUE CALCULATION SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Body Weight (kg) Cattle	100	(IT Corp, 1992)
Whitetailed Deer	45.4	(Dee, 1991)
Bobwhite Quail	0.0174	(USEPA, 1993b)
Eastern Cottontail	1.2285	(USEPA, 1993b)
Lab Rat	0.35	(USEPA, 1988)
Lab Dog	10	(USEPA, 1988)
Poultry	0.5	(IT Corp, 1992)
Red Fox	4.535	(Storm et.al., 1976)
Racoon	5.12	(USEPA, 1993b)
Lab Mouse	0.03	(USEPA, 1988)
Guinea pig	0.86	(USEPA, 1988)
Mink	1	(USEPA, 1993b)
Mallard Duck	1	(Heinze et.al., 1989)
Short-tailed Shrew	0.017	(Schlesinger and Potter, 1974)
Americal Kestral	0.13	(Pattee, 1984)
Blackbird	0.064	(Stickel, 1983)
Pheasant	1	(USEPA, 1993b)
Ringed Dove	0.155	(Terres, 1980)
Screech Owl	0.181	(Dunning, 1984)
Partridge	0.4	(Abiola, 1992)
-	-	· · · · · · · · · · · · · · · · · · ·

REGION IV TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 , MCB, CAMP LEJEUNE, NORTH CAROLINA

:

	Whitetailed Deer	Bobwhite Quail	Eastern Cottontail	Red Fox	Racoon
Chemical	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)
Aluminum	6.51E+00 (ct)	3.06E+01 (bi)	1.16E+01 (rb)	1.95E+01 (dg)	3.48E-01 (mo)
Antimony	6.91E-03 (rt)	9.52E-02 (rt)	4.06E+00 (rb)	1.49E-02 (rt)	1.43E-02 (rt)
Arsenic	3.25E-01 (cl)	1.98E+01 (bi)	2.90E+00 (rb)	2.37E-02 (mo)	2.27E-02 (mo)
Barium	1.30E-01 (ct)	3.06E+00 (bl)	1.16E+00 (rb)	1.07E-01 (rt)	1.02E-01 (rt)
Beryllium	1.07E-01 (rt)	1.47E+00 (rt)	3.55E-01 (rt)	2.30E-01 (rt)	2.21E-01 (rt)
Cadmium	3.25E-03 (ct)	5.59E+00 (bi)	2.90E-02 (rb)	9.76E-02 (dg)	1.64E-03 (rt)
Chromium	6.51E+00 (ct)	1.53E+02 (bi)	5.80E+01 (rb)	1.03E+00 (rt)	9.86E-01 (rt)
Cobalt	6.51E-02 (ct)	1.53E+00 (bi)	5.80E-01 (rb)	3.75E-01 (rb)	3.61E-01 (rb)
Copper	6.51E-01 (ct)	4.59E+01 (bi)	1.16E+01 (rb)	7.80E+00 (mk)	7.49E+00 (mk)
Iron	6.51E+00 (ct)	1.53E+02 (bi)	2.90E+01 (rb)	1.88E+01 (rb)	1.80E+01 (rb)
Lead	1.95E-01 (ct)	7.52E+00 (bi)	1.74E+00 (rb)	3.41E+00 (rt)	3.27E+00 (rt)
Manganese	1.30E+00 (ct)	3.06E+02 (bi)	2.32E+01 (rb)	3.75E+00 (rt)	3.60E+00 (rt)
Mercury	1.30E-02 (ct)	3.06E-01 (bi)	• •	1.36E-01 (rt)	1.31E-01 (rt)
Molybdenum	3.95E-03 (rt)	5.44E-02 (rt)	1.32E-02 (rt)	8.52E-03 (rt)	8.18E-03 (rt)
Nickel	3.25E-01 (ct)	4.59E+01 (bi)	2.90E+00 (rb)	3.25E+01 (dg)	2.05E+00 (rt)
Selenium	1.30E-02 (ct)	1.93E+00 (bi)	1.20E-01 (rb)	1.70E-02 (rt)	1.64E-02 (rt)
Silver	1.58E-02 (mo)	1.53E+01 (bi)	5.25E-02 (mo)	3.40E-02 (mo)	3.26E-02 (mo)
Thallium	4.54E-03 (rt)	6.26E-02 (rt)	1.51E-02 (rt)	9.79E-03 (rt)	9.40E-03 (rt)
Vanadium	3.25E-01 (ct)	4.39E+01 (bi)	5.80E-02 (rb)	2.77E-01 (rt)	2.66E-01 (rt)
Zinc	3.25E+00 (ct)	1.53E+02 (bi)	2.90E+01 (rb)	1.30E+00 (dg)	6.54E+01 (rt)
Cyanide	2.13E+00 (rt)	1.38E+01 (bi)	7.11E+00 (rt)	4.88E-01 (dg)	4.42E+00 (rt)
Acenaphthene	3.46E+00 (rt)	4.76E+01 (rt)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
Acenaphthylene	3.46E+00 (rt)	4.76E+01 (rt)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
Anthracene	8.71E+00 (mo)	1.20E+02 (mo)	2.90E+01 (mo)	1.88E+01 (mo)	1.80E+01 (mo)
Benzo(a)anthracene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(b)fluoranthene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(k)fluoranthene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(ghi)perylene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(g,h,i)perylene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Benzo(a)pyrene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
beta-BHC	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2.04E+00 (rt)
gamma-BHC	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2.04E+00 (rt)
Bis(2-ethylhexyl)phthalate	4.89E-02 (gp)	2.30E+00 (bi)	1.63E-01 (gp)	1.05E-01 (gp)	1.01E-01 (gp)
Bis(2-chloroethyl)ether	NA	NA	NA	NA	NA
Butylbenzylphthalate	3.14E+00 (rt)	4.32E+01 (rt)	1.05E+01 (rt)	6.77E+00 (rt)	6.50E+00 (rt)
Carbazole	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Chrysene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Dibenzofuran	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1,88E-01 (mo)	1.80E-01 (mo)
Dibenzo(a,h)anthracene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Dibenz(a,h)anthracene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
Diethylphthalate	3.99E+02 (mo)	5.50E+03 (mo)	1.33E+03 (mo)	8.60E+02 (mo)	8.26E+02 (mo)
2,4-Dimethylphenol	4.36E-01 (mo)	6.00E+00 (mo)	1.45E+00 (mo)	9.39E-01 (mo)	9.01E-01 (mo)
Di-n-butylphthalate	2.47E+01 (rt)	2.28E-01 (bi)	8.23E+01 (rt)	5.32E+01 (rt)	5.11E+01 (rt)
Di-n-octylphthalate	3.46E+00 (rt)	4.76E+01 (bi)	1.15E+01 (rt)	7.45E+00 (rt)	7.16E+00 (rt)
2,4-Dinitrophenol	3.95E+00 (rt)	5.44E+01 (bi)	1.32E+01 (rt)	1.30E+00 (dg)	8.18E+00 (rt)
2,6-Dinitrotoluene	2.42E-01 (dg)	3.33E+00 (dg)	8.05E-01 (dg)	5.20E-01 (dg)	5.00E-01 (dg)
Fluoranthene	1.09E+00 (mo)	1.50E+01 (mo)	3.63E+00 (mo)	2.35E+00 (mo)	2.25E+00 (mo)
Fluorene	2.47E+00 (rt)	3.40E+01 (rt)	8.23E+00 (rt)	5.32E+00 (rt)	5.11E+00 (rt)
Indeno(1,2,3-cd)pyrene	8.71E-02 (mo)	1.20E+00 (mo)	2.90E-01 (mo)	1.88E-01 (mo)	1.80E-01 (mo)
2-Methylnaphthalene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (rt)	1.68E+01 (rt)
Naphthalene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (rt)	1.68E+01 (rt)
Nitrobenzene	4.94E-02 (rt)	6.80E-01 (rt)	1.65E-01 (rt)	1,06E-01 (rt)	1.02E-01 (rt)
N-Nitrosodiphenylamine	9.88E+00 (rt)	1.36E+02 (rt)	3.29E+01 (rt)	2.13E+01 (rt)	2.04E+01 (rt)
Phenanthrene	8.10E+00 (rt)	1.12E+02 (rt)	2.70E+01 (rt)	1.75E+01 (rt)	1.68E+01 (rt)
Phenol	1.19E+00 (rt)	1.63E+01 (rt)	3.95E+00 (rt)	2.55E+00 (rt)	2.45E+00 (rt)
Pyr)	6.53E-01 (mo)	8.99E+00 (mo)	2.18E+00 (mo)	`}00 (mo)	1.35E+00 (mo)
<u>J</u>				1	

4

÷.

ł

REGION IV TERRESTRIAL REFERENCE VALUES SITE 65 - ENGINEER AREA DUMP REMEDIAL INVESTIGATION, CTO-0312 MCB, CAMP LEJEUNE, NORTH CAROLINA

	Whitetailed Deer	Bobwhite Quail	Eastern Cottontail	Red Fox	Racoon
Chemical	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)
Aldrin	6.51E-01 (ct)	6.80E-02 (rt)	1.65E-02 (rt)	3.25E-02 (da)	1.02E-02 (rt)
Alpha-chlordane	1.30E+00 (ct)	3.30E+00 (bi)	3.62E-02 (rt)	9.76E-02 (dg)	2.25E-02 (rt)
Gamma-chlordane	1.30E+00 (ct)	3.30E+00 (bi)	3.62E-02 (rt)	9.76E-02 (dg)	2.25E-02 (rt)
Dieldrin	6.51E-01 (ct)	1.16E-01 (bi)	3.29E-02 (II) 3.29E-03 (II)		· · · · · · · · · · · · · · · · · · ·
4.4'-DDD	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-03 (rt)	6.51E-03 (dg) 3.41E-01 (rt)	2.04E-03 (rt)
4,4'-DDE	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-01 (II)	3.41E-01 (it)	3.27E-01 (rt)
4,4'-DDT	1.58E-01 (rt)	8.80E-02 (bi)	5.26E-01 (rt)	• •	3.27E-01 (rt)
Endosulfan	1.19E-01 (rt)	2.84E+01 (bi)	3.95E-01 (rt)	3.41E-01 (rt)	3.27E-01 (rt)
Endosulfan II	1.19E-01 (rt)	2.84E+01 (bi)		7.42E-01 (dg)	2.45E-01 (rt)
Endosulfan sulfate			3.95E-01 (rt)	7.42E-01 (dg)	2.45E-01 (rt)
Endosonan sunate	1.19E-01 (rt)	2.84E+01 (bi)	3.95E-01 (rt)	7.42E-01 (dg)	2.45E-01 (rt)
	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Endrin aldehyde	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Endrin ketone	4.94E-02 (rt)	1.16E+00 (bi)	1.65E-01 (rt)	3.25E-02 (dg)	1.02E-01 (rt)
Heptachlor	2.96E-02 (rt)	4.08E-01 (rt)	9.87E-02 (rt)	6.39E-02 (rt)	6.13E-02 (rt)
Heptachlor epoxide	7.55E-05 (dg)	1.04E-03 (dg)	2.51E-04 (dg)	1.63E-04 (dg)	1.56E-04 (dg)
Aroclor-1221	6.91E-01 (rt)	9.52E+00 (rt)	2.30E+00 (rt)	1.49E+00 (rt)	1.43E+00 (rt)
Aroclor-1232	2.96E-02 (rt)	8.95E-01 (bi)	9.87E-02 (rt)	6.39E-02 (rt)	6.13E-02 (rt)
Aroclor-1260	9.88E-04 (rt)	1.36E-02 (rt)	3.29E-03 (rt)	2.13E-03 (rt)	2.04E-03 (rt)
Aroclor-1254	2.80E-02 (mk)	6.95E-01 (bi)	1.00E+00 (rb)	6.47E-01 (rb)	6.21E-01 (rb)
Aroclor-1248	1.13E-02 (mo)	1.56E-01 (mo)	2.80E-01 (rb)	1.81E-01 (rb)	2.34E-02 (mo)
Methylene chloride	1.16E+00 (rt)	1.59E+01 (rt)	3.85E+00 (rt)	2.49E+00 (rt)	2.39E+00 (rt)
Carbon disulfide	3.30E-01 (rb)	4.55E+00 (rb)	1.10E+00 (rb)	7.12E-01 (rb)	6.84E-01 (rb)
1,1-Dichloroethene	5.53E+00 (rt)	7.61E+01 (rt)	1.84E+01 (rt)	1.19E+01 (rt)	1.14E+01 (rt)
1,2-Dichloroethene (total)	9.88E-01 (rt)	1.36E+01 (rt)	3.29E+00 (rt)	2.13E+00 (rt)	2.04E+00 (rt)
Chloroform	7.51E+00 (rt)	1.03E+02 (rt)	2.50E+01 (rt)	3.90E+01 (dg)	1.55E+01 (rt)
2-Butanone	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	8.71E+01 (rt)	1.20E+03 (rt)	2.90E+02 (rt)	1.88E+02 (rt)	1.80E+02 (rt)
Trichloroethene	1.98E+01 (rt)	2.72E+02 (rt)	6.58E+01 (rt)	4.26E+01 (rt)	4.09E+01 (rt)
1,1,2-Trichloroethane	3.40E-02 (mo)	4.68E-01 (mo)	1.13E-01 (mo)	7.32E-02 (mo)	7.03E-02 (mo)
Benzene	1.98E-02 (rt)	2.72E-01 (rt)	6.58E-02 (rt)	4.26E-02 (rt)	4.09E-02 (rt)
1,1,2,2-Tetrachloroethane	1.50E+01 (rt)	2.07E+02 (rt)	5.00E+01 (rt)	3.24E+01 (rt)	3.11E+01 (rt)
Tetrachloroethene	2.77E-01 (rt)	3.81E+00 (rt)	9.21E-01 (rt)	5.96E-01 (rt)	5.72E-01 (rt)
Toluene	4.41E+00 (rt)	6.06E+01 (rt)	1.47E+01 (rt)	9.49E+00 (rt)	9.12E+00 (rt)
Ethylbenzene	1.92E+00 (rt)	2.64E+01 (rt)	6.39E+00 (rt)	4.13E+00 (rt)	3.97E+00 (rt)
Xylenes	3.54E+01 (rt)	4.87E+02 (rt)	1.18E+02 (rt)	7.62E+01 (rt)	7.32E+01 (rt)
Xylenes (total)	3.54E+01 (rt)	4.87E+02 (rt)	1.18E+02 (rt)	7.62E+01 (rt)	7.32E+01 (rt)
Vinyl chloride	3.36E-02 (rt)	4.62E-01 (rt)	1.12E-01 (rt)	7.24E-02 (rt)	6.95E-02 (rt)
Acetone	1.98E+00 (rt)	2.72E+01 (rt)	6.58E+00 (rt)	4.26E+00 (rt)	4.09E+00 (rt)
2-Hexanone	NA	NA	NA	NA	NA
a travellation	1.47.1	11/1	11/3	11/3	1373

Note: The following abbreviations indicate which species was used to develop the Terrestrial Reference Value

(ct) = cattle	(rb) = rabbit
(rt) = rat	(dg) = dog
(bi) = bird	(mo) = mouse
(gp) = guinea pig	(mk) = mink

NA - No Data Available

EQUATIONS USED TO CALCULATE EXPOSURE FOR THE RED FOX SITE 65, ENGINEERING DUMP AREA REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Food Source ingestion of: Vegetation (Iv) = 20 percent Small mammals (Im) = 80 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (lfr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (tv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E=total exposure Cw = Constituent concentration in water W = Ingestion of water Cm = Constituent concentration in small memmal Im = Ingestion of small memmal Cs = Constituent concentration in soil Bv = Vegetation biotransfer factor Iv = Ingestion of vegetation Is = Incidential ingestion of soil H = Ratio of home range area to site area Bb = Tissue biotransfer factor BW = Body weight
Parameters (Red Fox)	6.009E-01	1.682E-02	3.855E-01	NA	NA	4.807E-01	1.202E-01	4.535E+00	1.245E+03	2.600E+01	2.088E-02	E=(Cw)(lw)+[(cm)(lm)+(Cs)(Bv)(lv)+(Cs)(ls)][H] BW
Parameters (Small Mammal)	1.120E-01	2.690E-03	6.520E-02	NA	NA	NA	1.120E-01	3.725E-01	3.200E-02	1.000E+00	1.000E+00	<u>Cm=[(Cw)(lw)+((Cs)(Bv)(lv)+(Cs)(ls))(H)][Bb]</u> BW

Acetone 2-Butanone Ethylbenzene Methylene Chloride Toiuene Trichloroethene Xylenes (total) Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)piguanthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	5.330E+01 3.731E+01 6.265E-01 6.864E+00 9.324E-01 1.065E+00 5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.965E-02 1.965E-02 5.932E-03 5.193E-03 1.010E-02	0.005 ND ND ND ND ND ND ND ND ND ND	6.70E-03 ND 1.00E-03 2.00E-03 1.00E-03 1.00E-03 1.30E-01 1.90E-01 2.56E-01	NA NA NA NA NA NA NA	1.45E-08 2.68E-08 3.16E-05 5.01E-07 1.58E-05	1.57E-09 0.00E+00 6.18E-09 2.08E-09 9.12E-09	6.23E-04 0.00E+00 4.23E-07 7.75E-06	4.26E+00 NA 4.13E+00 2.49E+00	1.46E-04 NA 1.02E-07
2-Butanone Ethylbenzene Mothylene Chloride Toluene Trichloroethene Xylenes (total) Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pjerylene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene	3.731E+01 6.255E-01 6.864E+00 9.324E-01 1.065E+00 5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.164E-02 5.932E-03 5.193E-03 1.010E-02		1.00E-03 2.00E-03 2.00E-03 1.00E-03 5.00E-03 1.30E-01 1.90E-01	NA NA NA NA NA	2.68E-08 3.16E-05 5.01E-07 1.58E-05	0.00E+00 6.18E-09 2.08E-09	0.00E+00 4.23E-07 7.75E-06	NA 4.13E+00	NA 1.02E-07
Ethylbenzene Mathylene Chloride Trichloroethene Xylenes (total) Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)pervjerne Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	8.255E-01 8.864E-00 9.324E-01 1.065E+00 5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.965E-02 5.932E-03 5.193E-03 1.010E-02		2.00E-03 2.00E-03 1.00E-03 5.00E-03 1.30E-01 1.90E-01	NA NA NA NA	3.16E-05 5.01E-07 1.58E-05	6.18E-09 2.08E-09	4.23E-07 7.75E-06	4.13E+00	1.02E-07
Mathylene Chloride Toluene Trichloroethene Xylenes (totel) Accenaphthene Anthracene Benzo(a)anthracone Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	9.324E-01 1.065E+00 5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND ND ND ND ND ND	2.00E-03 1.00E-03 5.00E-03 1.30E-01 1.90E-01	NA NA NA	1.58E-05	2.08E-09	7.75E-06	2 405+00	
Trichloroethene Xylenes (totel) Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	1.065E+00 5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND ND ND ND ND	1.00E-03 5.00E-03 1.30E-01 1.90E-01	NA NA		0 425 00	4 407 00		NA
Xylenes (total) Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Benzo(b,fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	5.475E-01 2.464E-01 8.496E-02 1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND ND ND ND	5.00E-03 1.30E-01 1.90E-01	NA		9.120-09	1.19E-06	9,49E+00	1.25E-07
Àcenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(gh.l)perylene Benzo(gh.l)perylene Benzo(gh.l)perylene Benzo(gh.l)perylene Benzo(gh.l)perylene Benzo(gh.l)perylene Benzo(gh.l)perylene Carbazole Carbazole	2.464E-01 8.496E-02 1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND ND ND	1.30E-01 1.90E-01		1.26E-05	4.12E-09	6.67E-07	4.26E+01	1.57E-08
Anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	8.496E-02 1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND ND	1.90E-01	1 114	3.98E-05	3.42E-08	1.90E-06	7.62E+01	2.50E-08
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b,fluoranthene Benzo(c,fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	1.965E-02 1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND ND			1.58E-04	1.68E-06	2.78E-05	7.45E+00	3.73E-06
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	1.154E-02 5.932E-03 5.193E-03 1.010E-02	ND	2.56E-01	NA	1.00E-03	6.23E-06	2.37E-05	1.88E+01	1.26E-06
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	5.932E-03 5.193E-03 1.010E-02			NA	1.26E-02	4.23E-05	2.27E-05	1.88E-01	1.21E-04
Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	5.193E-03 1.010E-02	ו אויס ו	2.30E-01	NA	3.16E-02	7.79E-05	1.95E-05	1.88E-01	1.04E-04
Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate Carbazole	1.010E-02		2.28E-01	NA	1.00E-01	2.06E-04	1.89E-05	1.88E-01	1.01E-04
Bis(2-ethylhexyl)phthalate Carbazole		ND	2.17E-01	NA	1.26E-01	2.40E-04	1.80E-05	1.88E-01	9.58E-05
Carbazole		ND	2.46E-01	NA	3.98E-02	1.01E-04	2.07E-05	1.88E-01	1.10E-04
	2.337E-03	ND	8.70E-02	NA	5.01E-01	3.46E-04	7.62E-06	1.05E-01	7.23E-05
	5.500E-01	ND	1.80E-01	NA	1.00E-04	3.11E-06	6.87E-05	1.88E-01	3.66E-04
Chrysene	1.965E-02	ND	2.52E-01	NA	1.26E-02	4.17E-05	2.24E-05	1.88E-01	1.19E-04
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	1.26E-01	1.66E-04	1.24E-05	1.88E-01	6.61E-05
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	3.98E-04	3.99E-06	2.21E-05	1.88E-01	1.18E-04
Di-n-butylphthalate	8.496E-02	ND	2.35E-01	NA	1.00E-03	7.70E-06	2.93E-05	5.32E+01	5.50E-07
2,4-Dinitrophenol	4.605E+00	ND ND	1.50E-01 2.95E-01	NA NA	1.00E-06 3.09E-03	2.09E-07 1.87E-05	3.94E-04 3.02E-05	8.52E+00 2.35E+00	4.62E-05 1.28E-05
Fluoranthene	4.426E-02 1.447E-01	ND	1.00E-01	NA NA	3.98E-04	1.67E-05 2.02E-06	1.58E-05	2.35E+00 5.32E+00	2.96E-06
Fluorene	5.1932-03	ND	2.20E-01	NA	1.26E-01	2.43E-04	1.82E-05	1.885-01	9.68E-05
Indeno(1,2,3-cd)pyrene Phenanthrene	8.496E-02	ND	3.30E-01	NA	1.00E-03	2.432-04 1.08E-05	4.11E-05	1.002-07 1.75E+01	2.35E-06
	4.367E-02	ND	3.04E-01	NA NA	3.16E-03	1.96E-05	3.09E-05	1.41E+00	2.20E-05
Pyrene	4.367E-02 1.154E-02	ND	5.45E-02	NA	3.16E-02	1.84E-05	4.61£-06	3.41E-01	1.35E-05
4,4'-DDD 4,4'-DDE	4.546E-03	ND	8.30E-02	NA	1.58E-01	1.13E-04	6.89E-06	3.41E-01	2.02E-05
4,4-DD2 4,4'-DDT	6.776E-03	ND	5.60E-02	NA	7.94E-02	4.12E-05	4.64E-06	3.41E-01	1.36E-05
Endosulfan il	1.653E-01	ND	2.54E-03	NA	3.16E-04	4.57E-08	4.29E-07	7.42E-01	5.79E-07
Heptachlor epoxide	4.989E-02	ND	1.22E-03	NA NA	2.51E-03	6.81E-08	1.28E-07	1.63E-04	7.89E-04
Aroclor-1260	1.318E-02	ND	2.47E-02	NA	2.51E-02	6.95E-06	2.11E-06	2.13E-03	9.91E-04
Aluminum	4.000E-03	25.8	4.02E+03	NA	1.50E-03	5.76E-02	2.51E+00	1.95E+01	1.29E-01
Antimony	2.000E-01	ND	ND	NA	1.00E-03	0.00E+00	0.00E+00	1.49E-02	0.00E+00
Arsenic	4.000E-02	ND	ND	NA	2.00E-03	0.00E+00	0.00E+00	2.37E-02	0.00E+00
Barium	1.500E-01	0.0693	1.87E+01	NA	1.50E-04	1.48E-04	8.88E-03	1.07E-01	8.34E-02
Beryllium	1.000E-02	ND	ND	NA	1.00E-03	0.00E+00	0.00E+00	2.30E-01	0.00E+00
Chromium	7.500E-03	0.0276	6.48E+00	NA	5.50E-03	3.64E-04	2.88E-03	1.03E+00	2.80E-03
Copper	4.000E-01	0.0411	5.56E+01	NA	1.00E-02	7.10E-02	2.03E-02	7.80E+00	2.60E-03
iron	4.000E-03	7.89	7.57E+03	NA	2.00E-02	1.30E+00	1.28E+00	1.88E+01	6.79E-02
Lead	4.500E-02	0.0458	1.78E+02	NA	3.00E-04	1.11E-03	2.21E-02	3.41E+00	6.49E-03
Manganese	2.500E-01	0.0884	1.11E+02	NA	4.00E-04	3.68E-03	3.16E-02	3.75E+00	8.42E-03
Mercury	9.000E-01	ND	NÐ	(NA	2.50E-01	0.00E+00	0.00E+00	1.36E-01	0.00E+00
Nickel	6.000E-02	ND	3.28E+00	NA	6.00E-03	4.97E-04	3.64E-04	3.25E+01	1.12E-05
Selenium	2.500E-02	ND	ND	NA	1.50E-02	0.00E+00	0.00E+00	1.70E-02	0.00E+00
Thallium	4.000E-03	ND	1.38E+00	NA	4.00E-02	4.65E-04	1.11E-04	9.79E-03	1.13E-02
Vanadium	5.500E-03	0.0262	7.21E+00	NA	2.50E-03	1.71E-04	2.81E-03	2.77E-01	1.01E-02
Zinc	1.500E+00	0.144	3.77E+02	NA	1.00E-01	1,73E+01	3.93E-01	1.30E+00	3.02E-01

ND - Not Det NA - Not Appı.

EQUATIONS U CALCULATE EXPOSURE FOR THE RACCOON SITE 65, ENGIN DUMP AREA REMEDIAL INVL. ATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

F	Food Source ingestion of: ruit (Ifr) = 40 percent Tsh (If) = 60 percent	Feeding Rate (I in kg/d)	incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Fish Ingestion (If in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E=total exposure Cw = Constituent concentration in water Iw = Ingestion of water Cf = Constituent concentration in fish If = Ingestion of fish Cs = Constituent concentration in soil Br = Vegetation biotransfer factor (fruit) Ifr = Ingestion of fruit Is = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight
P	arameters	2.143E-01	2.014 E-02	4.224E-01	NA	8.571E-02	1.286E-01	NA	5.120E+00	2.570E+02	2.500E+01	1.012E-01	<u>E=(Cw)(lw) + (Cf)(lf) + [(Cs)(Br)(lfr) + (Cs)(ls)] [</u> BW

	1								
Constituent of Concern	Soil to Plant Transfer Coefficient (fruit)	Constituent Concentration in Water (mg/L)	Constituent Concentration in Soil (mg/kg)	Constituent Concentration in Worms (mg/kg)	Fish Bioconcentration Factor	Constituent Concentration in Fishes (mg/kg)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day)	Quotient Ratio (≖ E/TRV)
	(Br)	(Cw)	(Cs)	(Cwo)	(BCF)	(Cf)		(TRV)	
Acetone	5.330E+01	0.005	6.70E-03	NA	0.690	1.40E+03	3.52E+01	4.09E+00	8.60E+00
2-Butanone	3.731E+01	ND	ND	NA	ND	5.60E-01	1.41E-02	NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA	37.500	NÐ	1.46E-06	3.97E+00	3.67E-07
fethylene Chloride	6.864E+00	ND	2.00E-03	NA	0.900	ND	2.40E-05	2.39E+00	NA
oluene	9.324E-01	ND	2.00E-03	NA	10.700	5.00E+00	1.26E-01	9.12E+00	1.38E-02
richloroethene	1.065E+00	ND	1.00E-03	NA	10.600	ND	2.20E-06	4.09E+01	5.39E-08
(ylenes (total)	5.475E-01	ND	5.00E-03	NA	2.200	ND	6.63E-06	7.32E+01	9.05E-08
Acenaphthene	2.464E-01	ND	1.30E-01	NA	242.000	ND	1.06E-04	7.16E+00	1.48E-05
Inthracene	8.496E-02	ND	1.90E-01	NA	30.000	ND	1.03E-04	1.80E+01	5.71E-06
enzo(a)anthracene	1.965E-02	ND	2.56E-01	NA	30.000	ND	1.10E-04	1.80E-01	6.11E-04
lenzo(a)pyrene	1.154E-02	ND	2.30E-01	NA	30.000	ND	9.62E-05	1.80E-01	5.34E-04
3enzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	30.000	ND	9.32E-05	1.80E-01	5.17E-04
enzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA	30.000	ND	8.84E-05	1.80E-01	4.90E-04
Senzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	30.000	ND	1.02E-04	1.80E-01	5.67E-04
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA	130.000	ND	3.50E-05	1.01E-01	3.46E-04
Carbazole	5.500E-01	ND	1.80E-01	NA	ND	ND	2.39E-04	1.80E-01	1.33E-03
Chrysene	1.965E-02	ND	2.52E-01	NA	30.000	ND	1.09E-04	1.80E-01	6.03E-04
bibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	30.000	ND	6.10E-05	1.80E-01	3.38E-04
libenzofuran	5.500E-01	ND	5.80E-02	NA	ND	ND	7.71E-05	1.80E-01	4.28E-04
Di-n-butyiphthalate	8.496E-02	ND	2.35E-01	NA	89.000	ND	1.27E-04	5.11E+01	2.49E-06
4-Dinitrophenol	4.605E+00	ND I	1.50E-01	NA	1.500	ND	1.23E-03	8.18E+00	1.50E-04
luoranthene	4.426E-02	ND	2.95E-01	NA	1150.000	ND	1.40E-04	2.25E+00	6.20E-05
luorene	1.447E-01	ND	1.00E-01	NA	30.000	ND	6.43E-05	5.11E+00	1.26E-05
ndeno(1,2,3-cd)pyrene	5.193E-03	ND	2.20E-01	NA	30.000	ND	8.93E-05	1.80E-01	4.96E-04
Phenanthrene	8.496E-02	ND	3.30E-01	NA	30.000	ND	1.79E-04	1.68E+01	1.07E-05
yrene	4.367E-02	ND	3.04E-01	NA	30.000	ND	1.44E-04	1.35E+00	1.06E-04
4'-DDD	1.154E-02	ND	5.45E-02	NA	53600.000	4.00E-02	1.03E-03	3.27E-01	3.14E-03
4'-DDE	4.546E-03	ND	8.30E-02	NA	53600.000	1.45E-02	3.98E-04	3.27E-01	1.22E-03
,4'-DDT	6.776E-03	ND	5.60E-02	NA	53600.000	ND	2.29E-05	3.27E-01	7.01E-05
indosulfan li	1.653E-01	ND	2.54E-03	NA	270.000	ND	1.72E-06	2.45E-01	7.02E-06
leptachlor epoxide	4.989E-02	ND	1.22E-03	NA	11200.000	ND	5.89E-07	1.56E-04	3.77E-03
voclor-1260	1.318E-02	ND	2.47E-02	NA	31200.000	ND	1.04E-05	2.04E-03	5.08E-03
Numinum	6.500E-04	25.8	4.02E+03	NA	231.000	1.88E+01	4.21E+00	3.48E-01	1.21E+01
Intimony	3.000E-02	ND	ND	NA	1.000	1.50E+00	3.77E-02	1.43E-02	2.63E+00
rsenic	6.000E-03	ND	ND	NA	44.000	1.50E-01	3.77E-03	2.27E-02	1.66E-01
lanium	1.500E-02	0.0693	1.87E+01	NA	6.000	2.90E+00	8.64E-02	1.02E-01	8.45E-01
Beryllium	1.500E-03	ND	ND	NA	19.000	2.80E-02	7.03E-04	2.21E-01	3.18E-03
hromium	4.500E-03	0.0276	6.48E+00	NA	16.000	ND	4.91E-03	9.86E-01	4.97E-03
opper	2.500E-01	0.0411	5.56E+01	NA	36.000	8.60E+00	2.65E-01	7.49E+00	3.54E-02
on	1.000E-03	7.89	7.57E+03	NA	ND	2.61E+01	4.33E+00	1.80E+01	2.40E-01
ead	9.000E-03	0.0458	1.78E+02	NA	49,000	4.90E-01	8.96E-02	3.27E+00	2.74E-02
langanese	5.000E-02	0.0884	1.11E+02	NA	35.000	4.90E+00	1.84E-01	3.60E+00	5.11E-02
lercury	2.000E-01	ND	ND	NA	5500.000	1,10E-01	2.76E-03	1.31E-01	2.11E-02
lickel	6.000E-02	ND	3.28E+00	NA	47.000	ND	1.64E-03	2.05E+00	8.01E-04
elenium	2.500E-02	ND	ND	NA	6,000	4.20E-01	1.05E-02	1.64E-02	6.44E-01
hallium	4.000E-04	ND	1,38E+00	NA	119.000	4.00E-02	1.55E-03	9.40E-03	1.65E-01
/anadium	3.000E-03	0.0262	7.21E+00	NA	ND	ND	5.07E-03	2.66E-01	1.91E-02
Linc	9.000E-01	0.144	3.77E+02	NA	47.000	2.90E-01	7.44E-01	6.54E+01	1.14E-02
						BIVOL DI			
									2.56E+01

ND - Not Detected NA - Not Applicable

EQUATIONS USED TO CALCULATE EXPOSURE FOR THE BOBWHITE QUAIL SITE 65, ENGINEERING DUMP AREA REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Food Source ingestion of: Vegetation(Iv) = 100 percent	Feeding Rate (I in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposur E=total exposure Cw≔constituent conc. in water Cs≂constituent conc. in soil Cwo≕constituent conc. in worms Cfr≃constituent conc. in fruit H=ratio of home range area to site area
Parameters	1.350E-02	1.107E-03	1.910E-02	NA	NA	NA	1.350E-02	1.736E-01	2.624E+01	2.600E+01	9.908E-01	E=(Cw){lw) + [(Cs)(Bv)(lv)+(Cs)(ls)][H] BW

	(Bv)	in Water (mg/L) (Cw)	in Soil (mg/kg) (Cs)	in Worms (mg/kg) (Cwo)	in Fruit (mg/kg) (Cfr)	in Mammals (mg/kg) (Cm)	(mg/kg/d) (E)	Reference Value (mg/kg/day) (TRV)	Ratio (= E/TRV)
							······		
Acetone	5.330E+01	0.005	6.70E-03	NA	NA	NA	0.028	1.26E+01	2.23E-03
2-Butanone	3.731E+01	ND	ND	NA	NA	NA	0.000	NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA	NA	NA	0.000	1.23E+01	4.45E-06
Viethylene Chloride	6.864E+00	ND	2.00E-03	NA	NA	NA	0.001	7.38E+00	NA
foluene	9.324E-01	ND	2.00E-03	NA	NA	NA	0.000	2.81E+01	5.55E-06
Trichloroethene	1.065E+00	ND	1.00E-03 5.00E-03	NA NA	NA NA	NA	0.000	1.26E+02	7.00E-07
(total)	5.475E-01	ND	1.30E-01	NA	NA	NA NA	0.000	2.26E+02	1.07E-06 1.49E-04
Acenaphthene Anthracene	2.464E-01 8.496E-02	ND ND	1.90E-01	NA	NA NA	NA	0.003	2.21E+01 5.57E+01	1.49E-04 4.39E-05
Benzo(a)anthracene	8.496E-02 1.965E-02	ND	2.56E-01	NA	NA	NA	0.002	5.57E+01	4,39E-05 3.60E-03
Benzo(a)pyrene	1.905E-02	ND	2.30E-01	NA	NA	NA	0.002	5.57E-01	2,98E-03
Benzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	NA	NA	0.002	5.57E-01	2.78E-03
Benzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA	NA	NA	0.001	5.57E-01	2.62E-03
Benzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	NA	NA	0.002	5.57E-01	3.14E-03
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA	NA	NA	0.001	1.07E+00	5.29E-04
Carbazole	5.500E-01	ND	1.80E-01	NA	NA	NA	0.009	5.57E-01	1.57E-02
Chrysene	1.965E-02	ND	2.52E-01	NA	NA	NA	0.002	5.57E-01	3.55E-03
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	NA	NA	0.001	5.57E-01	1.81E-03
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	NA	NA	0.003	5.57E-01	5.07E-03
Di-n-butylphthalate	8.496E-02	ND	2.35E-01	NA	NA NA	NA	0.003	1.06E-01	2.86E-02
2,4-Dinitrophenol	4.605E+00	ND	1.50E-01	NA	NA	NA	0.054	1.44E+01	3.75E-03
Fluoranthene	4.426E-02	ND	2.95E-01	NA NA	NA	NA	0.003	6.96E+00	4.13E-04
Fluorene	1.447E-01	ND	1.00E-01	NA	NA	NA	0.002	1.58E+01	1.11E-04
ndeno(1,2,3-cd)pyrene	5.193E-03	ND	2.20E-01	NA	NA	NA	0.001	5.57E-01	2.65E-03
Phenanthrene	8.496E-02	ND	3.30E-01	NA	NA	NA	0.004	5.18E+01	8.20E-05
Pyrene	4.367E-02	ND	3.04E-01	NA	NA	NA	0.003	4.17E+00	7.05E-04
4,4'-DDD	1.154E-02	ND	5.45E-02	NA	NA	NA	0.000	8.80E-02	4.46E-03
4,4'-DDE	4.546E-03	ND	8.30E-02	NA	NA	NA	D.001	8.80E-02	6.29E-03
4,4'-DDT	6.776E-03	ND	5.60E-02	NA	NA	NA	0.000	8.80E-02	4.35E-03
Endosulfan II	1.653E-01	ND	2.54E-03	NA NA	NA NA	NA	0.000	1.32E+01	3.67E-06
Heptachlor epoxide	4.989E-02	ND	1.22E-03 2.47E-02	NA NA	NA NA	NA NA	0.000	4.82E-04	2.57E-02 2.87E-02
Aroclor-1260	1.318E-02 4.000E-03	ND 25.8	4.02E+03	NA	NA	NA	29.488	6.31E-03 1.42E+01	2.87E+02 2.07E+00
Aluminum		25.0 ND	4.022+03	NA	NA	NA	29.466	4.42E+01	0.00E+00
Antimony Arsenic	2.000E-01 4.000E-02		ND	NA	NA	NA	0.000	4.42E-02 9.19E+00	0.00E+00
Barium	4.000E-02 1.500E-01	0.0693	1.87E+01	NA	NA	NA	0.341	1.42E+00	2.40E-01
Beryllium	1.000E-01	ND	ND	NA	NA	NA	0.000	6.82E-01	0.00E+00
Chromium	7.500E-02	0.0276	6.48E+00	NA	NA	NA	0.048	7.11E+01	6.71E-04
Copper	4.000E-01	0.0270	5.56E+01	NA	NA	NA	2.069	2.13E+01	9.71E-02
lion	4.000E-01	7.89	7.57E+03	NA	NA	NA	51.000	7.11E+01	7.18E-01
Lead	4.500E-02	0.0458	1.78E+02	NA	NA	NA	1.746	3.49E+00	5.00E-01
Manganese	2.500E-01	0.0884	1.11E+02	NA	NA	NA	2.861	1.42E+02	2.01E-02
Mercury	9.000E-01	ND	ND	NA	NA	NA	0.000	1.42E-01	0.00E+00
Nickel	6.000E-02	ND	3.28E+00	NA	NA	NA	0.036	2.13E+01	1.68E-03
Selenium	2.500E-02	ND	ND	NA	NA	NA	0.000	8.95E-01	0.00E+00
Thallium	4.000E-03	ND	1.38E+00	NA	NA	NA	0.009	2.90E-02	3.15E-01
Vanadium	5.500E-03	0.0262	7.21E+00	NA	NA	NA	0.051	2.04E+01	2.53E-03
Zinc	1.500E+00	0.144	3.77E+02	NA	NA	NA	45.959	7.11E+01	6.47E-01

ND - Not Det NA - Not App

EQUATIONS TO CALCULATE EXPOSURE FOR THE EASTERN COTTONTAIL RABBIT SITE 65, EN NG DUMP AREA REMEDIAL IN GATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

-

Food Source ingestion of: Vegetation(iv) = 100 percent	Feeding Rate (ł in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in I/d)	Rate of Worm Ingestion (Iwo in kg/d)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Mammat Ingestion (Im In kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E = Total exposure Cw = Constituent concentration in water tw = Ingestion of water Cs = Constituent concentration in soil $Bv = Vegetation biotransfer factor tv = Ingestion of vegetation fs = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight$
Parameters	2.370E-01	5.688E-03	1.192E-01	NA	NA	NA	2.370E-01	1.229E+00	9.297E+03	2.600E+01	1.000E+00	E=(Cw){iw) + [(Cs)(Bv)(iv) + (Cs)(is)] [H] BW

,

Constituent of Concern	Soil to Plant Transfer Coefficient (Bv)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Constituent Concentration in Fruit (mg/kg) (Cfr)	Constituent Concentration in Mammals (mg/kg) (Cm)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV)
Acetone	5.330E+01	0.005	6.70E-03	NA	NA	NA	6.94E-02	6.58E+00	1.05E-02
2-Butanone	3.731E+01	ND	ND	NA	NA	NA	0.00E+00	NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA	NA	NA	1.25E-04	6.39E+00	1.96E-05
Viethylene Chloride	6.864E+00	ND	2.00E-03	NA	NA	NA	2.66E-03	3.85E+00	NA
Toluene	9.324E-01	ND	2.00E-03	NA	NA	NA	3.69E-04	1.47E+01	2.51E-05
Frichloroethene	1.065E+00	ND	1.00E-03	NA	NA	NA	2.10E-04	6.58E+01	3.19E-06
Kylenes (total)	5.475E-01	ND	5.00E-03	NA	NA	NA	5.51E-04	1.18E+02	4.68E-06
Cenaphthene	2.464E-01	ND	1.30E-01	NA	NA	NA	6.78E-03	1.15E+01	5.89E-04
Inthracene	8.496E-02	ND	1.90E-01	NA	NA	NA	3.99E-03	2.90E+01	1.38E-04
Benzo(a)anthracene	1.965E-02	ND	2.56E-01	NA	NA	NA	2.15E-03	2.90E-01	7.42E-03
Benzo(a)pyrene	1.154E-02	ND	2.30E-01	NA	NA	NA	1.58E-03	2.90E-01	5.45E-03
Benzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	NA	NA	1.32E-03	2.90E-01	4.55E-03
Benzo(g,h,i)perylene	5.193E-03	ND	2.17E-01	NA	NA	NA	1.22E-03	2.90E-01	4.22E-03
Benzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	NA	NA	1.62E-03	2.90E-01	5.59E-03
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA	NA	NA	4.42E-04	1.63E-01	2.72E-03
Carbazole	5.500E-01	ND	1.80E-01	NA	NA	NA	1.99E-02	2.90E-01	6.87E-02
Chrysene	1.965E-02	ND	2.52E-01	NA	NA	NA	2.12E-03	2.90E-01	7.31E-03
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	NA	NA	8.45E-04	2.90E-01	2.91E-03
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	NA	NA	6.42E-03	2.90E-01	2.21E-02
Di-n-butylphthalate	8.496E-02	ND ND	2.35E-01 1.50E-01	NA NA	NA NA	NA	4.94E-03	8.23E+01	6.01E-05
4-Dinitrophenol	4.605E+00	ND	2.95E-01	NA	NA	NA	1.34E-01	1.32E+01	1.02E-02
fluorantnene	4.426E-02		1.00E-01	NA	NA	NA NA	3.89E-03	3.63E+00	1.07E-03
ndeno(1,2,3-cd)pyrene	1.447E-01 5.193E-03	ND	2.20E-01	NA	NA	NA NA	3.25E-03	8.23E+00	3.96E-04
Phenanthrene	8.496E-02	ND	3.30E-01	NA	NA	NA	1.24E-03	2.90E-01	4.26E-03
^o yrene	4.367E-02		3.04E-01	NA	NA	NA	6.94E-03 3.97E-03	2.70E+01	2.57E-04 1.82E-03
4'-DDD	1.154E-02	ND	5.45E-02	NA .	NA	NA	3.74E-04	2.18E+00 5.26E-01	7.10E-04
4'-DDE	4.546E-03	ND	8.30E-02	NA	NA	NA	3.74E-04 4.57E-04	5.26E-01	7.10E-04 8.68E-04
4'-DDT	6.776E-03	ND	5.60E-02	NA	NA	NA	4.57E-04 3.32E-04		
Endosulfan II	1.653E-01		2.54E-03	NA	NA	NA	3.32E-04 9.27E-05	5.26E-01 3.95E-01	6.32E-04 2.35E-04
leptachlor epoxide	4.989E-02	ND	1.22E-03	NA	NA	NA	9.27E-05	2.51E-04	2.35E-04 6.92E-02
voclor-1260	1.318E-02	ND	2.47E-02	NA	NA	NA	1.77E-04	3.29E-03	5.39E-02
Numinum	4.000E-03	25.8	4.02E+03	NA	NA	NA	2.42E+01	3.29E-03 1.16E+01	2.09E+00
Antimony	2.000E-01	ND	ND	NA	NA	NA	0.00E+00	4.06E+00	0.00E+00
rsenic	4.000E-02	ND	ND	NA	NA	NA	0.00E+00	2.90E+00	0.00E+00
Barium	1.500E-01	0.0693	1.87E+01	NA	NA	NA	6.33E-01	1.16E+00	5.46E-01
Beryllium	1.000E-02	ND	ND	NA	NA	NA	0.00E+00	3.55E-01	0.00E+00
Chromium	7.500E-03	0.0276	6.48E+00	NA	NA	NA	4.21E-02	5.80E+01	7.25E-04
Copper	4.000E-01	0.0411	5.56E+01	NA	NA	NA	4.55E+00	1.16E+01	3.92E-01
on	4.000E-03	7.89	7.57E+03	NA	NA	NA	4.16E+01	2.90E+01	1.43E+00
ead	4.500E-02	0.0458	1.78E+02	NA	NA	NA	2.37E+00	1.74E+00	1.36E+00
Manganese	2.500E-01	0.0884	1.11E+02	NA	NA	NA	5.90E+00	2.32E+01	2.54E-01
Aercury	9.000E-01	ND	ND	NA	NA	NA	0.00E+00	1.20E-01	0.00E+00
lickel	6.000E-02	ND	3.28E+00	NA	NA	NA	5.32E-02	2.90E+00	1.83E-02
Selenium	2.500E-02	ND	ND	NA	NA	NA	0.00E+00	1.20E-01	0.00E+00
hallium	4.000E-03	ND	1.38E+00	NA	NA	NA	7.45E-03	1.51E-02	4.93E-01
/anadium	5.500E-03	0.0262	7.21E+00	NA	NA	NA	4.36E-02	5.80E-02	7.51E-01
linc	1.500E+00	0.144	3.77E+02	NA	NA	NA	1.11E+02	2.90E+01	3.82E+00
	1								1.14E+01

ND - Not Detected NA - Not Applicable

EQUATIONS USED TO CALCULATE EXPOSURE FOR THE WHITETAILED DEER SITE 65, ENGINEERING DUMP AREA REMEDIAL INVESTIGATION, CTO-312 MCB, CAMP LEJEUNE, NORTH CAROLINA

Food Source ingestion of: Vegetation(Iv) ≈ 100 percent	Feeding Rate (l in kg/d)	Incidental Soil Ingestion (Is in kg/d)	Rate of Drinking Water Ingestion (Iw in t/d)	Rate of Worm Ingestion (two in kg/q)	Rate of Fruit Ingestion (Ifr in kg/d)	Rate of Mammal Ingestion (Im in kg/d)	Rate of Vegetation Ingestion (Iv in kg/d)	Body Weight (BW) (kg)	Home Range Size (acres)	Contaminated Area (acres)		Equation Used to Calculate Total Exposure E = Total exposure Cw = Constituent concentration in water w = Ingestion of water Cs = Constituent concentration in soll By = Vegetation biotransfer factor Ity = Ingestion of vegetation Is = Incidential ingestion of soil H = Ratio of home range area to site area BW = Body weight
Parameters	1.600E+00	1.850E-02	1.100E+00	NA	NA	NA	1.600E+00	4.540E+01	4.540E+02	2.600E+01	5.727E-02	E=(Cw)(iw) + [(Cs)(Bv)(iv) + (Cs)(is)] [H] BW

Constituent of Concern	Soil to Plant Transfer Coefficient (Bv)	Constituent Concentration in Water (mg/L) (Cw)	Constituent Concentration in Soil (mg/kg) (Cs)	Constituent Concentration in Worms (mg/kg) (Cwo)	Constituent Concentration in Fruit (mg/kg) (Cfr)	Constituent Concentration in Mammals (mg/kg) (Cm)	Total Exposure (mg/kg/d) (E)	Terrestrial Reference Value (mg/kg/day) (TRV)	Quotient Ratio (= E/TRV)
Acetone	5.330E+01	0,005	6.70E-03	NA	NA	NA	8.42E-04	1.98E+00	4.26E-04
2-Butanone	3.731E+01	ND	ND	NA	NA	NA	0.00E+00	NA	NA
Ethylbenzene	6.255E-01	ND	1.00E-03	NA	NA	NA	1.29E-06	1.92E+00	6.70E-07
Methylene Chloride	6.864E+00	ND	2.00E-03	NA	NA	NA	2.78E-05	1.16E+00	NA
Toluene	9.324E-01	ND	2.00E-03	NA	NA	NA	3.81E-06	4,41E+00	8.65E-07
Trichloroethene	1.065E+00	ND	1.00E-03	NA	NA	NA	2.17E-06	1.98E+01	1.10E-07
Xylenes (total)	5.475E-01	ND ND	5.00E-03 1.30E-01	NA	NA	NA	5.64E-06	3.54E+01	1.60E-07
Acenaphthene	2.464E-01	ND ND	1.30E-01	NA	NA	NA	6.77E-05	3.46E+00	1.96E-05
Anthracene	8.496E-02	ND	2.56E-01	NA	NA	NA	3.70E-05	8.71E+00	4.25E-06
Benzo(a)anthracene	1.965E-02 1.154E-02	ND	2.30E-01	NA NA	NA NA	NA	1.61E-05 1.07E-05	8.71E-02 6.71E-02	1.85E-04 1.23E-04
Benzo(a)pyrene Benzo(b)fluoranthene	5.932E-03	ND	2.28E-01	NA	NA NA	NA NA	1.07E-05 8.07E-06	8.71E-02 8.71E-02	9.26E-04
Benzo(g,h,i)perviene	5.193E-03	ND	2.17E-01	NA	NA	NA	7.35E-06	8.71E-02	9.202-05 8.44E-05
Benzo(k)fluoranthene	1.010E-02	ND	2.46E-01	NA	NA	NA	1.08E-05	8.71E-02	1.24E-04
Bis(2-ethylhexyl)phthalate	2.337E-03	ND	8.70E-02	NA	NA	NA	2.44E-06	4.89E-02	4.99E-05
Carbazole	5.500E-01	ND	1.80E-01	NA	NA	NA	2.04E-04	8.71E-02	2.34E-03
Chrysene	1.965E-02	ND	2.52E-01	NA	NA	NA	1.59E-05	8.71E-02	1,82E-04
Dibenz(a,h)anthracene	5.193E-03	ND	1.50E-01	NA	NA	NA	5.07E-06	8.71E-02	5.82E-05
Dibenzofuran	5.500E-01	ND	5.80E-02	NA	NA	NA	6.57E-05	8.71E-02	7.55E-04
Di-n-butylphthalate	8.496E-02	ND	2.35E-01	NA	NA	NA	4.58E-05	2.47E+01	1.85E-06
2,4-Dinitrophenol	4.605E+00	ND	1.50E-01	NA	NA	NA	1.40E-03	3.95E+00	3.54E-04
Fluoranthene	4.426E-02	ND	2.95E-01	NA	NA	NA	3.33E-05	1.09E+00	3.06E-05
Fluorene	1.447E-01	ND	1.00E-01	NA	NA	NA	3.15E-05	2.47E+00	1.28E-05
indeno(1,2,3-cd)pyrene	5.193E-03	ND	2.20E-01	NA	NA	NA	7,43E-06	8.71E-02	8.53E-05
Phenanthrene	8.496E-02	ND	3.30E-01	NA	NA	NA	6.43E-05	8.10E+00	7.94E-06
Pyrene	4.367E-02	ND ND	3.04E-01 5.45E-02	NA NA	NA	NA	3.39E-05	6.53E-01	5.19E-05
4,4'-DDD	1.154E-02 4.546E-03	ND ND	5.45E-02 8.30E-02	NA	NA	NA	2.54E-06	1.58E-01	1.61E-05
4,4'-DDE 4,4'-DDT	6.776E-03	ND	5.60E-02	NA	NA NA	NA NA	2.70E-06 2.07E-06	1.58E-01 1.58E-01	1.71E-05 1.31E-05
Endosulfan II	1.653E-01	ND	2.54E-03	NA	NA NA	NA	9.07E-07	1.19E-01	7.65E-06
Heptachlor epoxide	4.989E-02	ND	1.22E-03	NA	NA	NA	1.51E-07	7.55E-05	2.00E-03
Aroclor-1260	1.318E-02	ND	2.47E-02	NA	NA	NA	1.23E-06	9.88E-04	1.25E-03
Aluminum	4.000E-03	25.8	4.02E+03	NA	NA	NA	7.51E-01	6.51E+00	1.16E-01
Antimony	2.000E-01	ND	ND	NA	NA	NA	0.00E+00	6.91E-03	0.00E+00
Arsenic	4.000E-02	ND	ND	NA	NA	NA	0.00E+00	3.25E-01	0.00E+00
Barium	1.500E-01	0.0693	1.87E+01	NA	NA	NA	7.76E-03	1.30E-01	5.97E-02
Beryllium	1.000E-02	ND	ND	NA	NA	NA	0.00E+00	1.07E-01	0.00E+00
Chromium	7.500E-03	0.0276	6.48E+00	NA	NA	NA	9.18E-04	6.51E+00	1.41E-04
Copper	4.000E-01	0.0411	5.56E+01	NA	NA	NA	4.72E-02	6.51E-01	7.25E-02
ron	4.000E-03	7.89	7.57E+03	NA	NA	NA	4.29E-01	6.51E+00	6.59E-02
Lead	4.500E-02	0.0458	1.78E+02	NA	NA	NA	2.14E-02	1,95E-01	1.10E-01
Manganese	2.500E-01	0.0884	1.11E+02	NA	NA	NA	6.10E-02	1.30E+00	4.69E-02
Mercury	9.000E-01	ND	ND D DDC / DD	NA	NA	NA	0.00E+00	1.30E-02	0.00E+00
Nickel	6.000E-02	ND	3.28E+00	NA	NA	NA	4.74E-04	3.25E-01	1.46E-03
Selenium	2.500E-02	ND	ND 1 395 100	NA	NA	NA	0.00E+00	1.30E-02	0.00E+00
Thallium	4.000E-03	ND 0.0262	1.38E+00 7.21E+00	NA NA	NA	NA	4.33E-05	4.54E-03	9.54E-03 2.71E-03
Vanadium	5.500E-03	0.0262	3.77E+02	NA	NA	NA	8.83E-04	3.25E-01	2.71E-03 3.55E-01
Zinc	1.500E+00	0.144	3.112702	N/A	NA	NA	1.15E+00	3.25E+00	3.335-01
	1	1		1			}		8.47E-01

Abiola, F.A. 1992. "Ecotoxicity of Organochloride Insecticides: Effects of Endosulfan on Birds Reproduction and Evaluation of its Induction Effects in Partridge, *Perdix perdix*". L. Rev. Vet. Med. 143:443-450.

Agency for Toxic Substances and Disease Registry (ASTDR). 1994. Toxicological Profile for Selenium. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Endosulfan. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Total Xylenes - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1993. Toxicological Profile for Total Nitrophenols - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Arsenic - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Polychlorinated Biphenyls - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Tetrachloroethylene- Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Benzene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Beryllium - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Cadmium - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Chromium - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for N-Nitrosodiphenylamine, Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Cyanide -Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Chloroform - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Diethylphthalate - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Heptachlor/Heptachlor Epoxide - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Methylene Chloride - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1991. Toxicological Profile for Vinyl Chloride - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Copper - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Endrin/Endrin Aldehyde - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Ethylbenzene - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Naphthalene/2-methynaphthalene - Draft. Prepared by Life Systems, Inc, for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Polycyclic Aromatic Hydrocarbons - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Silver - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,2-Dichloroethane. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for 1,1-Dichloroethene. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1989. Toxicological Profile for Trichloroethylene. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for Mercury -Draft. Prepared by Clement Associates for the US Department of Health and Human Services

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for 1,1,2-Trichloroethane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for 1,1,1-Trichloroethane - Draft. Prepared by Syracuse Research Corporation for the US Department of Health and Human Services.

Agency for Toxic Substances and Disease Registry (ASTDR). 1988. Toxicological Profile for Alpha, Beta, and gamma Isomers of Hexachlorocyclohexane - Draft. Prepared by Clement Associates for the US Department of Health and Human Services.

Alumot, E., E. Nachtomi, E. Mandel, et.al., 1976. "Tolerance and Acceptable Daily Intake of Chlorinated Fumigants in the Rat Diet". Food Cosmet. Toxicol. 14:105-110. Cited in ASTDR, 1989 (1,2-Dichloroethane).

Ambrose, A.M., D.S. Larson, J.R. Borzelleca and G.R. Hennigar, Jr. 1976. "Long-Term Toxologic Assessment of Nickel in Rats and Dogs". J. Food Science Technology. 13:181-187. Cited in IRIS, Accessed January 1995 (Nickel).

Aulerich, R.J., G.J. Bursian, and A.C. Napolitano. 1990. "Subacute Toxicity of Dietary Heptachlor to Mink (Mustela vison)". Arch. Environ. Contam. Toxicol 19(6):913-916. Cited in ASTDR, 1991

(Heptachlor).

Aulerich, R.J., R.K., Ringer, M.R., Bleavins, et. al. 1982. "Effects of Supplemental Dietary Copper on Growth, Reproductive Performance and Kit Survival of Standard Dark Mink and the Acute Toxicity of Copper to Mink". J. Animal Sci. 55:337-343. Cited in ASDTR, 1989 (Copper).

Aulerich, R.J., and R.K., Ringer. 1980. "Toxicity of the Polychlorinated Biphenyl Aroclor-1016 to Mink". Environmental Research Laboratory, Office of Research and Development. Cited in Opresko, et.al., 1994.

Azar, A., H.J. Trochimowicz and M.E. Maxfield. 1973. "Review of Lead Studies in Animals Carried out at Haskell Laboratory - Two Year Feeding Study and Response to Hemorrhage Study". In Barth D., A. Berlin, R. Engel, P. Recht and J. Smeets, Ed. Environmental Health Aspects of Lead: Proceedings International Symposium; October 1972; Amsterdam, The Netherlands. Commission of the European Communities, Luxemberg. p. 199-208. Cited in IRIS, Accessed January 1995 (Lead).

Barnes, D.W., V.M. Sanders, K.L. White Jr., et.al. 1985. "Toxicology of Trans-1,2-Dichloroethylene in the Mouse". Drug. Chem. Toxicol. 8:373-392. Cited in IRIS Accessed After Jan. 1992 (Trans-1,2-Dichloroethylene).

Bleavins, M.R., C.S. Sisodia, and T.K. Mukkur. 1980. "The Effects of Methyl Mercury, Tetrethyl Lead, and Sodium Arsenite on the Humoral Immune Response in Mice". Toxicol. Appl. Pharmacol. 52:245-254. Cited in Opresko et.al., 1994.

Bornhauses, M. M.R. Nusch, and H. Greim. 1980. "Operant Behavior Performance Changes in Rats After Prenatal Methylmercury Exposure". Toxicol. Appl. Pharmacol. Cited in ASTDR, 1988 (Mercury).

Brown, D., K.R. Butterworth, I.F. Gaunt, P. Grasso, S.D. Gangolli. 1978. "Short-Term Oral Toxicity Study of Diethyl Phthalate in the Rat". Food Cosmet. Toxicol. 16:415-422. Cited in IRIS, Oct, 1992.

Bruckner, J.V., K.L. Khanna, and H.H. Cornish. 1974. Effect of Prolonged Ingestion of Polychlorinated Biphenyls on the Rat. Food Cosmet. Toxicol. 12:323. Cited in ASTDR, 1991 (PCBs).

Bruckner, J.V., W.F. MacKenzie, S. Muralidhara, R. Luthra, G.M. Kyle, and D. Acosta. 1986. "Oral Toxicity of Carbon Tetrachloride: Acute, Subacute, and Subchronic Studies in Rats". Fund. Appl. Toxicol. 6(1):16-34.

Buben, J.A., and E.J. O'Flaherty. 1985. "Delineation of the Role of Metabolism in the Hepatotoxicity of Trichloroethylene and Perchloroethylene: A Dose-Effect Study". Toxicol. Appl. Pharmacol. 78:105-122. Cited in ASTDR, 1991 (Tetrachloroethylene).

Byrne, J.J., J.P. Carbone, and M.G. Pepe. 1988. "Supression of Serum Adrenal Cortex Hormones by Chronic Low-Dose Polychlorobyphenyl of Polybromobiphenyl Treatments". Arch. Environ. Contam. Toxicol. 17:47-53. Cited in ASTDR, 1991 (PCBs).

Cardy, R.H., W. Lijinski, and P.K. Hildebrant. 1979. "Neoplastic and Nonneoplastic Urinary Bladder Lesions Induced in Fischer 344 rats and B6C3F Hybrid Mice by N-Nitrosodiphenylamine." Ecotoxocol. Environ. Safety 3:29-37.

Carpenter, C.P., C.S. Weil, and H.F. Smyth, 1953. "Chronic Oral Toxicity of Di(2-ethylhexyl)phthalate for Rats and Guinea Pigs". Arch. Indust. Hyg. Occup. Med. 8:21 9-226. Cited in IRIS, Accessed Oct. 1994 (DEHP).

Chang, L.W., S. Yamaguchi, and J.A.W. Dudley. 1974. "Neurological Changes in Cats Following Long-Term Diet of Mercury Contaminated Tuna". Acta. Neuropathol. (Berlin) 27:171-176. Cited in ASTDR, 1988 (Mercury).

Chang, L.W., and H.A. Hartman. 1972. "Ultrastructural Studies of the Nervious System After Mercury Intoxication". Acta. Neuropathol. (Berlin) 20:122-138. Cited in ASTDR, 1988 (Mercury).

CIIT (Chemical Industry Institute of Toxicology). 1984. Ninty-day Inhalation Toxicity Study of Nitrobenzene in F344 Rats and B6C3F1 Mice. Research Triangle Park, NC. FYI-OTS-0874-0333.

Cody, T.E., S. Witherup, L. Hastings, K. Stemmes, and R.T. Christian. 1981. "1,3-Dinitrobenzene: Toxic Effects in Vivo and in Vitro". J. Toxicol. Environ. Health. 7(5): 829-847. Cited in IRIS, March 1995

Cox, G.E., D.E. Bailey, and K. Morgareidge. 1975. "Toxicity Studies in Rats with 2-Butanol Including Growth, Reproduction and Teratologic Observations". Food and Drug Research Laboratories, Inc., Waverly, NY, Report No. 91MR R 1673.

Dahlgren, R.B., R.L. Linder, and C.W. Carlson. 1972. "Polychlorinated Biphenyls: Their Effects on Penned Pheasants". Environ. Health Perspect. 1:89-101. Cited in Opresko et.al., 1994.

Dee, J.C. November, 1991. "Methodology For Assessing Potential Risks To Deer Populations: A Case Study at a Superfund Site". Paper presented at the 1991 Annual Meeting of the Society of Environmental Toxicology and Chemistry. Abstract No. 426.

Dikshith, T.S.S., R.B. Raizada, M.K. Srivastava, and B.S. Kaphalia. 1984. "Response of Rats to Repeated Oral Administration of Endosulfan". Ind. Health. 22:295-304. Cited in ASTDR 1993 (Endosulfan).

Domingo, J.L., J.L. Paternaia, J.M. Llobet, and J. Corbella. 1986. "Effects of Vanadium on Reproduction, Gestation, Parturition and Lactation in Rats upon Oral Administration". Life Sci. 39:819-824. Cited on Opresko et.al., 1994.

Dow Chemical Company. 1958. MRID No. 00061912. Available from USEPA, Write to FOI, USEPA, Washington, DC 20460 (Heptachlor Epoxide)

Drinker, K.P., P.K. Thompson, and M. Marsh. 1927. "An Investigation of the Effects of the Long-

Continued Ingestion of Zinc, in the Form of Zinc Oxide, by Cats and Dogs, Together with Observations Upon the Excretion and the Storage of Zinc". Am. J. Physiol. 80:31. Cited in NAS, 1980.

Dunning, J.B., 1984. Body Weights of 686 Species of North American Birds. West. Bird Banding Assoc. Monogr. No. 1. Eldon Publ. Co. Cave Crk, AZ. Cited in Opresko, et.al., 1984.

Duer, R.S., M.S. Bercegeay, and L.M. Mayo. 1988. "Acute Exposures to p-Xylene and Toluene Alter Visual Information Processing". Neurotoxicol Teratol 10:147-153. Cited in ASTDR, 1990 (Total Xylenes).

Eisler, R. 1990. Chlordane Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.21), July 1990.

Eisler, R. 1990. Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.23), July 1991.

FAO/WHO (Food Agriculture Organization/World Health Organization). 1978. "Evaluation of Some Pesticides in Food." Food and Agric, Organ. Plant Production and Protection Paper. Suppl. 10, Rome. Cited in Newell et.al., 1987.

Fitzhugh, O.G., A.A. Nelson, and E.P. Laug et.al. 1950 "Chronic Oral Toxicies of Mercuri-Phenyl and Mercuric Salts". Arch. Ind. Hyg. Med. 2:433-442. Cited in ASTDR, 1989 (Mercury).

Fitzhugh, O.G., 1948. "Use of DDT Insecticides on Food Products". Ind. Eng. Chem. 40:704-705.

Formigli, L., R. Scelsi, P. Poggi, C. Gregotti, A. DiNucci, E. Sabbioni, L. Gottardi, and L. Manzo. 1986. "Thallium-Induced Testicular Toxicity in the Rat". Environ. Res. 40:531-539.

Ford, K.L., F.M. Applehans, and R. Ober. 1991. "Development of Toxicity Reference Values for Terrestrial Wildlife". In HMC-Northeast '91 Conference Proceedings, Sponserec by the Hazardous Materials Control Research Institute. July 10-12, 1991.

Fucik, K.W., H.W. Armstrong, and J.M. Neff. 1977. "The Uptake of Napthalenes by the Clam Rangia cuneata, in the Vicinity of an Oil-Separator Platform in Trinity Bay, Texas". Proc. 1977 Oil Spill Conference. Washington DC: American Petroleum Institute. Cited in USEPA, 1981.

Gasaway, W.C., and I.O. Buss. 1972. "Zinc Toxicity in the Mallard". J. Widl. Manage. 36: 1107-1117.

Gerhart, J.M. 1986. "Ninety-day Oral Toxicity Study of Copoper Cyanide (CuCN) in Sprague-Dawley Rats". Prepared for the Dynamac Coporation, Rockville, MD by IIT Research Institute, Chicago, IL. IITRI Project No. LO6183, Study No. 3. Cited in ASTDR, 1991 (Cyanide).

Gomez, G., M.A. Aparicio, and C.C. Willhite. 1988. "Relationship Between Dietary Cassave Cyanide Levels and Broiler Performance". Nutr. Rep. Int. 37:63-75. Cited in Eisler, 1991 (Cyanide).

Gomez, G., M. Valdivieso, J. Santos, and C. Hoyos. 1983. "Evaluation of Cassava Root Meal Prepared

from Low- or High-Cyanide Containing Cultivars in Pig and Broiler Diets." Nutr. Rep. Int. 28:693-704. Cited in Eisler, 1991 (Cyanide).

Good, E.E., and G.W. Ware. 1969. "Effects of Insecticides on Reproduction in the Laboratory Mouse, IV. Endrin and Dieldrin". Toxicol. Appl. Pharmacol. 14:201-203.

Gross, W.G., and V.G. Heller. 1946. "Chromates in Animal Nutrition". J. Ind. Hyg. Toxicol. 28:52-56. Cited in IRIS, Accessed January 1995 (Chromium).

Halverson, A.W., I.S. Palmer and P.L. Guss. 1966. "Toxicity of Selenium to Post-Weanling Rats." Toxicol. Appl. Pharmacol". 9:477-484. Cited in IRIS, Accessed January 1995 (Selenium).

Hardin B.D., G.P. Bond, M.R. Sikor, F.D. Andrew, R.P. Beliles, and R.W. Niemeir. 1981. "Testing of Selected Worlplace Chemicals for Teratogenic Potential". Scand J. Work Environ. Health. 7(Suppl 4):66-75. Cited in HEAST, March 1994.

Harr, J.R., J.F. Bone, Tinsley, I.J., et. al. 1967. "Selenium Toxicity in Rats. II. Histopathology". In; Muth OH, Oldfield J.E., P.H., Weswig, ed. Selenium Biomed Proc 1st Int. Symp. Oregon State Univ. 1966. Vol. II, Westport, Conn: AVI Publishing Co. 153-178. Cited in ASTDR, 1989 (Selenium).

Hazelton Labs. 1988. Subchronic Toxicity Study in Rats with m-Xylene. Report by Hazelton Laboratories America, Inc., Rockville MD for Dyanamic Corporation, Rockville, MD. Unpublished. Cited in ASTDR, 1993 (Total Xylenes).

Health Effects Assessment Summary Tables (HEAST). 1994. USEPA, Office of Solid Waste and Emergency Response. EPA 540/R-94/020.

Heath, R., J. Spann, and J. Kreitzer. 1969. "Marked DDE Impairment of Mallard Reproduction in Controlled Studies". Nature 224:47-48. Cited in Newell, 1987.

Heinz, G.H., D.J. Hoffman, and L.G. Gold. 1989. "Impaired Reproduction of Mallards Fed and Organic Form of Selenium". J. Wildl. Mgmt. 53: 418-428. Cited in Opresko, et.al., 1994.

Heinz, G.H., D.J. Hoffman, A.J. Krynitsky, and D.M.G. Weller. 1987. "Reproduction in Mallards Fed Selenium". Environ. Toxicol. Chem. 6:423-433.

Heywood, R., R.J. Sortwell, PRB Noel, et. al. 1979. "Safety Evaluation of Toothpaste Containing Chloroform, III. Long-term Study on Beagle Dogs". J. Environ Pathol Toxicol 2:835-851. Cited in ASTDR, 1991 (Chloroform).

Hoechst. 1989. "Endosulfan-Beta - Substance Technical (code HOE 02671 00 ZD96 0002): Testing for Toxicity by Repeated Oral Administration (1-year feeding study) to Beagle Dogs". Conducted by Hoechst Aktiengesellschaft, Frankfurt, Germany. Project No. 87.0643. Cited in ASTDR, 1993 (Endosulfan).

Howard, J.W., and R.F. Hanzal. 1955. "Chronic Toxicity for Rats of Food Treated with Hydrogen Cyanide". J. Agric. Food. Chem. 3:325-329.

Huff, J.E., J.K. Haseman, and D.M. DeMarini, et.al. 1989. "Multiple-Site Carcinogenicity of Benzene in

Fischer 344 Rats and B6C3F1 Mice". Environ. Health. Perspect. 82:125-163. Cited in ASTDR, 1991 (Benzene).

Hulzebos, E.M., D.M.M. Adema, E.M. Dirven-van Breemen, L. Henzen, W.A. van Dis, H.A. Herbold, J.A. Hoekstra, R. Baerselman, and C.A.M van Genstel. 1993. "Phytotoxicity Studies with Lactuca sative in Soil and Nutrient Solution". Environmental Toxicology and Chemistry, 12:1079-1094.

IT Corporation. November, 1992. Baseline Risk Assessment, Weldon Springs Ordanance Works, Weldon Spring, Missouri. Prepared for the Department of Army Corps of Engineers, Kansas City District.

Ito N., H. Nagasaki, H. Aoe, et.al. 1975. "Development of Heptocellular Carcinomas in Rats Treated with Benzene Hexachloride". JNCI 54:801-805. Cited in ASTDR, 1988 (BHC).

Izushi F., and M. Ogata. 1990. "Hepatic and Muscle Injuries in Mice Treated with Heptachlor". Toxicol. Lett. 54:47-54.

Jeter, M.A., and G.K. Davis. 1954. "The Effects of Dietary Molybdenum Upon Growth, Hemoglibin, Reproduction, and Lactation in Rats." J. Nutr. 54:215-220. Cited in IRIS, August 1995

Jorgenson, T.A., E.F. Meierhenry, and C.J. Rushbrook, et.al. 1985. "Carcinogenicity of Chloroform in Drinking Water to Male Osborne-Mendel Rats and Female B6C3F, Mice". Fundam. Appl. Toxicol 5:760-769. Cited in ASTDR 1991 (Chloroform).

Kopp S.J., T. Glonek, H.M. Perry Jr. et.al., 1982. "Cardiovascular Actions of Cadmium at Environmental Exposure Levels." Science 217:837-839. Cited in ASTDR, 1991 (Cadmium).

Lamb, J.C., IV, R.E. Chapin, J. Teague, A.D. Lawton, and J.R. Reel. 1987. "Reproductive Effects of Four Phthalic Acid Esters in the Mouse". Toxicol. Appl. Pharmacol. 88:255-269.

Lane, R.W., B.L. Riddle, and J.F. Borzelleca. 1982. "Effects of 1,2-Dichloroethane and 1,1,1-Trichloroethane in Drinking Water on Reproduction and Development in Mice". Toxicol. Appl. Pharmacol. 63:409-421.

Lang, E.P., A.A. Nelson, O.G. Fitzhugh, and F.M. Kunze. 1950. "Liver Cell Alteration and DDT Storage in the Fat of the Rat Induced by Dietary Levels of 1-50 ppm DDT". J. Pharmacol. Exp. Thearp. 98:268-273. Cited in IRIS, Oct. 1994.

Laskey, J.W., G.L. Rehnberg, J.F. Hein, and S.D. Carter. 1982. "Effects of Chronic Manganese (MN₃O₄) Exposure on Selected Reproductive Parameters in Rats.: J. Toxicol. Environ. Health. 9:677-687. Cited in Opresko et.al., 1994.

Lee, C.C. et.al., 1976. Mammalian Toxicity of Munition Compounds, Phase II. Effects of Multiple Doses. Part III: 2,6-Dinitrotoluene." U.S. Army Medical Research and Development Command, Fort Detric, MD. Cited in HEAST, March 1994

Linder, R.E., T.B. Gaines, and R.D. Kimbrough. 1974. "The Effect of Polychlorinated Biphenyls on Rat

Reproduction". Food Cosmet. Toxicol. 12:63-77. Cited in ASTDR, 1991 (PCBs).

Loser E and D. Lorke. 1977. "Semichronic Oral Toxicity of Cadmium. I. Studies on Rats". Toxicology 7:215-224. Cited in ASTDR, 1992 (Cadmium).

MacKenzie, R.D., R.U. Byerrum, C.F. Decker, C.A. Hoppert and R.F. Langham. 1958. "Chronic Toxicity Studies. II. Hexavalent and Trivalent Chromium Administered in Drinking Water to Rats". Am. Med. Assoc. Arch. Ind. Health. 18:232-234. Cited in Chromium IRIS, Accessed January 1995.

MacKenzie, K.M., and D.M. Angevine. 1981. "Infertility in Mice Exposed in Utero to Benzo(a)pyrene. Biol". Reprod. 24:183-191. Cited in ASTDR, 1989 (PAHs).

McCauley, P.T., M. Robinson, L.W. Condie, et.al. Undated. "The Effects of Subacute and Subchronic Oral Exposure To Cis-1,2-Dichloroethylene in Rats. Health Effects Research Laboratory, USEPA, Cincinnati, Ohio. Cited in HEAST, March 1994.

McLane, M.A.R., and D.L. Hughes. 1980. "Reproductive Success of Screech Owls Fed Aroclor-1248". Arch Environ. Contam. Toxicol. 9:661-665. Cited in Opresko et.al., 1994.

Massie H.R., and V.R. Aiello. 1984. "Excessive Intake of Copper: Influence on Longevity and Cadmium Accumulation in Mice". Mech. Ageing. Dev. 26:195-203. Cited in ASTDR, 1989 (Copper).

National Academy of Sciences (NAS). 1980. Mineral Tolerance of Domestic Animals. National Research Council, Commission on Natural Resources, Committee on Animan Nutrition.

National Coffee Association (NCA). 1982. "24-Month Chronic Toxicity and Oncogenecity Study of Methylene Chloride in Rats". Final report. Prepared by Hazelton Labs. America, Inc., Vienna, VA (Unpublished), Cited in IRIS, Oct. 1994.

National Research Council of Canada (NRCC). 1975. Chlordane: its Effects on Canadian Ecosystems and its Chemistry. Nat. Res. Counc. Can. Publ. NRCC 14094. Cited in Eisler, 1990 (Chlordane).

Nawrot, P.S. and R.E. Staples. 1979. "Embryofetal Toxicity and Teratogenecity of Benzene and Toluene in the Mouse". Teratology, 19:41A

NCI. 1979. Bioassay of N-Nitrosodiphenylamine for Possible Carcinogenicity. Betheseda, MD: US Dept. of Health, Education, and Welfare, Public Health Service, National Institute of Health, National Cancer Institute. Division of Cancer Cause and Prevention. DHEW Publ (NIH) 79-1720. Cited in ASTDR, 1991 (N-Nitrosodiphenylamine).

NCI. 1978a. Bioassay of Technical-Grade Endrin for Possible Carcinogenicity. Betheseda, MD: National Cancer Institute. Division of Cancer Cause and Prevention. NCI-CG-TR 12. Cited in ASTDR, 1990 (Endrin).

NCI. 1978b. Bioassay of 1,1,2,2-Tetrachloroethane for Possible Carcinogenicity. Betheseda, MD: National Cancer Institute. Division of Cancer Cause and Prevention. NTIS PB277, 4537GA, DHEW/PUB/NIH-78-827. Cited in ASTDR, 1994 (Endrin).

NCI. 1977. Bioassay of Heptachlor of Possible Carcinogenicity. CAS No. 76-44-8. Technical Report Series 9. Betheseda, MD: U.S. Department of Health, Education, and Welfare, National Institute of Health, National Cancer Institute. DHEW Publication (NIH) 77-809. Cited in ASTDR, 1991 (Heptachlor).

Nebeker, A.V., W.L. Griffis, T.W. Stutzman, G.S. Schuytema, L.A. Carey, and S.M. Scherer. 1992. "Effects of Aqueous and Dietary Exposure of Dieldrin on Survival, Growth and Bioconcentration in Mallard Ducklings". USEPA, Corvallis Environmental Research Laboratory. Environ. Chem. and Toxicol. 11:987-699.

Newell, A.J., D.W. Johnson, and L.A. Allen. 1987. Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorous Wildlife. Division of Fish and Wildlife, Burear of Environmental Protection, NY Department of Environmental Conservation. Technical Report 87-3.

NTP. 1989. Toxicology and Carcinogenesis Studies of Toluene in F344/N Rats and B6C3F1 Mice. Technical Report Series No. 371. Research Triangle Park, NC. Cited in IRIS Accessed Oct. 1994. (Toluene).

NTP. 1988. Developmental Toxicity Evaluation of 1,1,1-Trichloroethane (CAS No. 71-55-6) Administered to CD Rats. Final report Part 1. National Toxicology Program, Research Triangle Park, NC. Cited in ASTDR, 1988 (1,1,1-Trichloroethane).

NTP. 1986a. NTP Technical Report on the Toxicological and Carcinogenesis of Xylenes (mixed) (60.2% m-Xylene, 13.6% p-Xylene, 17.0% Ethylbenzene, and 9.1% o-Xylene) in F344/N Rats and B6C3F1 Mice (Gavage Studies). US Department of Health and Human Services, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC., NTP TR 327, NIH Publ. No 86-2583. Cited in IRIS Accessed Oct. 1994.

NTP. 1986b. NTP Technical Report Series No. 289. Toxicology and Carcinogenesis Studies of Benzene in F344/N Rats and B6C3F1 Mice (Gavage Studies). US Department of Health and Human Services, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC., NIH Publ. No 86-2545. Cited in ASTDR, 1991 (Benzene).

NTP. 1985a. Trichloroethylene Reproduction and Fertility Assessment in CD-1 Mice when Administered in the Feed. National Toxicology Program, Department of Health and Human Services, National Institutes of Health, Bethesada, MD. Cited in ASTDR, 1989 (Trichloroethylene).

NTP. 1985b. Twenty-Six Week Subchronic Study and Modified Mating Trial in F344 Rats. Butyl Benzyl Phthalate. Final Report. Project No. 12307-02, -03. Hazelton Laboratories America, Inc. Unpublished Study. Cited in IRIS, Oct. 1992.

NTP. 1983a. Teratologic Evaluation of Phenol in CD Rats. Report Prepared by Research Triangle Institute, Research Triangle Park, NC. NTIS PB83-247726. Govt. Rep. Announce Index. 83(25):6247. Cited in HEAST, March 1994.

NTP. 1983b. Carcinogenic Studies of 1,1,1,2-Tetrachloroethane in F344/N Rats and B6C3F1 Mice.

National Toxicology Program, Cited in HEAST, March 1994.

O'Dell, G.O., W.J. Miller, S.L. Moore, W.A. King, J.C. Ellers, and H. Jurecek. 1971. "Effect of Dietary Nickel Level on Excretion and Nickel Content of Tissues in Male Calves." Journal of Animal Science, 32:769-733. Cited in IT, 1992.

Ondreicka, R.E., E. Ginter, and J. Kortus. 1966. Chronic Toxicity of Aluminum in rats and Mice and its Effects on Phosphorus Metabolism." Brit. J. Indust. Med. 23:305-313. Cited in Opresko et.al., 1994.

Opresko, D.M., B.E. Sample, and G.W. Suter II. 1994. Toxicological Benchmarks for Wildlife, 1994 Revisions. Prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management. September, 1994. ES/ER/TM-86/R1.

Pattee, O.H., 1984. "Eggshell Thickness and Reproduction in American Kestrals Exposed to Chronic Dietary Lead". Arch. Environ. Contam. Toxicol. 13:29-34.

Peakall, D.B., 1974. "Effects of di-N-butylphthalate and di-2-ethylhexylphthalate on the Eggs of Ring Doves". Bull. Environ. Contam. Toxicol. 12:698-702.

Piekacz, H. 1971. Effect of Dioctyl and Dibutyl Phthalates on the Organism of Rats after Oral Administration in Prolonged Experiment. II. Subacute and Chronic Toxicity. Rocz Panstw Zakl HIG 22(3):295-307. Cited in HEAST, November 1994.

Quast J.F., C.G. Humiston, C.E. Wade, et.al. 1983. "A Chronic Toxicity and Oncogenecity Study in Rats and Subchronic Toxicity Study in Dogs on Ingested Vinylidene Chloride". Fundam Appl. Toxicol 3(1):55-62. Cited in ASTDR, 1989 (1,1-Dichloroethene).

Ringer, R. 1983. "Toxicology of PCBs in Mink and Ferrets". In. F. D'Itri and M Kamrin (eds.), PCBs: Human and Environmental Hazards. Butterworth Pul., Woburn, MA. pp. 227-240. Cited in Newell et. al. 1987.

Roesijadi, G., J.W. Anderson, and J.W. Blaylock. "Uptake of Hydrocarbons from Marine Sediments Contaminated with Prudhoe Bay Crude Oil: Influence of Feeding Type of Test Species and Availability of Polycyclic Aromatic Hydrocarbons." J. Fish. Res. Board. Can. 35:608-614. Cited in USEPA, 1981.

Rogers, A.E. 1979. Nutrition. In: The Laboratory Rat, Volume I: Biology and Diseases, H.J. Baker, J.R. Lindsey and S.H. Weisbroth, Ed. Academic Press, New York. Cited in Manganese IRIS, Accessed January 1995.

Rosenfeld, I., and O.A. Beath. 1964. Selenium: Geobotany, Biochemistry, Toxicity and Nutrition. Academic Press, New York. p. 198-208.

Rungby, J., and G. Danscher. 1984. "Hypoactivity in Silver Exposed Mice." Acta. Pharmacol. et Toxicol. 55:398-401. Cited in ASTDR, 1989 (Silver).

Sanders, V.M., K.L. White Jr, G.M. Shopp Jr., and A.E. Munson. 1985. "Humoral and Cell-Mediated Immune Status of Mice Exposed to 1,1,2-Trichloroethane". Drug Chem Toxicol 8:357-372. Cited in IRIS Accessed Oct, 1988 (1,1,2-Trichloroethane).

Schlicker, S.A. and D.H. Cox. 1968. "Maternal Dietary Zinc, and Development and Zinc, Iron, and Copper Contant of the Rat Fetus". J. Nutr. 95:287-294. Cited in Opresko et.al., 1994.

Schlesinger, W.H., and G.L. Potter. 1974. "Lead, Copper, and cadmium Concentrations in Small Mammals in the Hubbard Brook Experimental Forest". OKIOS. 25:148-152. Cited in Opresko et.al., 1994.

Schmal, D. 1955. "The Testing of Naphthalene and Anthracene for Carcinogenic Effects on Rats". Z. Krebsforsch 60:697-710. Cited in ASTDR, 1989 (Naphthalene)

Schroder, H.A. M. Mitchener, and A.P. Nasur. 1976. "Zirconium, Niobium, Antimony, Vanadium, and Lead in Rats". J. Nutr. 100:59-66. Cited in IRIS, Accessed Oct. 1994 (Antimony).

Schroder, H.A. and M. Mitchener. 1975a. "Life-term Effects of Mercury, Methyl Mercury and Nine Other Trace Metals on Mice." J. Nutr. 105:452-458. Cited in IRIS, Accessed January 1995 (Barium).

Schroder, H.A. and M. Mitchener. 1975b. "Life-term Studies in Rats: Effects of Aluminum, Barium, Beryllium and Tungsten." J. Nutr. 105:421-427. Cited in IRIS, Accessed January 1995 (Barium).

Schroder, H.A. and M. Mitchener. 1971. "Toxic Effects of Trace Elements on the Reproduction of Mice and Rats". Arch. Environ. Health 23:102-106. Cited in ASTDR, 1991 (Arsenic).

Schroder, H.A., M. Mitchener, and A.P. Nason. 1970. "Zirconium, Niobium, Antimony, and Lead in Rats: Life-Term Studies." J. Nutr. 100:59-69. Cited in HEAST, March 1994.

Smith, C.C. 1953. "Toxicity of Butyl Sterate, Bibutyl Sebacate, Dubutyl Phthalate, and Methoxyethyl Oleate". Arch. Hyg. Occup. Med. 7:310-318.

Smyth, H. Jr, C.P. Carpenter, C.S. Weil, et.al. 1962. "Range Finding Toxicity Data: List VI". Am. Indust. Hyg. Assoc. J. 23:95-107. Cited in ASTDR, 1989 (Ethylbenzene).

Spann, J.W., G.H. Heinz, and C.S. Hulse. 1986. "Reproduction and Health in Mallards Fed Endrin". Environ. Toxicol. Chem. 5:755-759.

Stickel, L.F., W.H. Stickel, R.A. Dryland, and D.L. Hughes. 1983. "Oxychlordane, HCS-3260, and Nonachlor in Birds: Lethal Residues and Loss Rates". J. Toxicol. Environ. Health. 12:611-622.

Storm, G.L., R.D. Andrews, R.L. Phillips, R.A. Bishop, D.B. Siniff, and J.R. Tester. 1976. "Morphology, Reproduction, Dispersal, and Mortality of Midwestern Red Fox Populations". Wildl. Monogr. Cited in Opresko et.al., 1994.

Street J.C., and R.P. Sharma. 1975. "Alteration of Induced Cellular and Humoral Immune responses by Pesticides and Chemicals of Environmental Concern: Quantitative Studies of Immunosuppression by DDT, Aroclor 1254, Carbaryl, Carbofuran, and Methylparathion". Toxicol. Appl. Pharmacol. 32:587-602. Cited in ASTDR, 1991 (PCBs).

Tainter, M.L., and W.E. Borley. 1938. "Influence of Vitamins and Dinitrophenol on the Production of Experimental Cataract". Arch. Ophthalmol 20:30-36. Cited in ASTDR, 1993 (Nitrophenols).

Tainter, M.L., and D.A. Wood. 1934. "A Case of Fatal Dinitrophenol Poisoning". JAMA 102:1147. Cited in ASTDR, 1993 (Nitrophenols).

Tewe, O.O., and E. Pessu. 1982. "Performance and Nutrient Utilization in Growing Pigs Fed Cassava Peel Rations." Cited in Eisler,

Tewe, O.O., and J.H. Maner. 1981. "Long-Term and Carry-Over Effect of Dietary Inorganic Cyanide (KCN) in the Life Cycle Performance and Metabolism of Rats". Toxicol. Appl. Pharmacol. 58:1-7.

Thomas, P.T., and R.D. Hinsdill. 1980. Perinatal PCB Exposure and ite Effects on the Immune System of Young Rabbits". Drug Chem. Toxicol. 3:173-184. Cited in ASTDR, 1991 (PCBs).

Til, H.P., H.R. Immel, and V.J. Feron. 1983. Lifespan Oral Carcinogenicity Study of Vinyl Chloride in Rats. Final Report. Civo Institutes, TNO, Report No. V-93.285/291099. Cited in ASTDR, 1991 (Vinyl Chloride)

Tinsley, I.J, J.R. Harr, J.F. Bone et.al. 1967. "Selenium Toxicity in Rats. I. Growth and Longetivity". In: Muth OH, Oldfield J.E., P.H., Weswig, ed. Selenium Biomed Proc 1st Int. Symp. Oregon State Univ. 1966. Vol, II, Westport, Conn: AVI Publishing Co. 141-152. Cited in ASTDR, 1994 (Selenium).

Treon, J.F., F.P. Cleveland, and L. Cappel. 1955. "Toxicity of Endrin for Laboratory Animals." Agricultural and Food Chemistry 3:842-848. Cited in ASTDR, 1989 (Endrin)

USDOD. 1985. AD-A171-601. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (HMX)

USDOD. 1983a. AD-A168-637. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (TNT)

USDOD. 1983a. AD-A160-774. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (RDX)

USDOD. 1983b. AD-A157-002. Department of Defense. Available form Defense Technical Center. Write to Documents, Cameron Station, Alexandria, VA, 22314. Cited in IRIS, March, 1995. (TNT)

USEPA, 1993a. Great Lakes Water Quality Initiatives Criteria Documents for the Protection of Wildlife (Proposed). DDT, Mercury, 2,3,7,8-TCDD, PCBs. EPA/822/R-93-007. Office of Science and Technology, Washington, D.C. Cited in Opresko, et.al., 1994.

USEPA, U.S. Environmental Protection Agency. December 1993b. Wildlife Exposure Factors Handbook. Office of Research and Development. Washington, D.C. EPA/600/R-93/187a.

USEPA, 1989a. Mouse Oral Subchronic Study. Conducted by Toxicity Research Labs, LTD. Muskegon, MI. for the Office of Solid Waste. Cited in IRIS, After Jan. 1992.

USEPA, 1989b. Mouse Oral Subchronic Study with Acenaphthene. Conducted by Hazelton Laboratory Inc., for the Office of Solid Waste. Cited in IRIS, Sept. 1993.

REFERENCES FOR TERRESTRIAL REFERENCE VALUES

USEPA, 1989c. Ninty-Day Gavage Study in Albino Mice Using 2,4-Dimethylphenol. Study No. 410-2831. Prepared by Dynamac Corporation, Rockville, MD, for the Office of Solid Waste and Emergency responce, Washington, DC.

USEPA, 1988a. 13-Week Mouse Oral Subchronic Study. Prepared by Toxicity Research Labs, LTD. Muskegon, MI. for the Office of Solid Waste. Cited in IRIS, Jan. 1995.

USEPA, 1988b. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Environmental Criteria and Assessment Office, Cincinnati, OH. EPA/600/6-87/008. Cited in Opresko, et.al., 1994.

USEPA, 1987. Health and Environmental Effects Document for Chlorinated Cyclopentadienes. Prepared for the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1986a. Ninty-day Gavage Study with Albino Rats using Acetone. Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1986b. Subchronic (90 day) Toxicity of Thallium(I) Sulfate in Spragu-Dawley Rats. Final Report. Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Solid Waste. Cited in HEAST, March 1994.

USEPA, 1981. An Exposure and Risk Assessment for Benzo(a)pyrene and Other Polycyclic Aromatic Hydrocarbons, Volume IV.

USEPA, 1980. Ambient Water Quality Criteria for Cyanides. USEPA. 440/5-80-037. Cited in Eisler, 1991.

U.S. Fish and Wildlife Service. 1964. Pesticide-Wildlife Studies, 1963: A Review of Fish and Wildlife Service Investigations During the Calander Year. FWS Circular 199.

Velsicol Chemical Company. 1969. MRID No. 00030198. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1992 (Endrin).

Velsicol Chemical Company. 1955. MRID No. 00062599. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1992 (Heptachlor).

Velsicol Chemical Company. 1983. MRID No. 00138591, 00144313. Available from USEPA. Write to FOI, USEPA, Washington, DC, 20460. Cited in IRIS, Oct. 1994 (Chlordane).

Villeneuve D.C., D.L. grant, and W.E.J. Phillips. 1972. "Modification of Pentobarbital Sleeping Times in Rats Following Chronic PCB Ingestion". Bull. Environ. Contam. Toxicol. 7:264-269. Cited in ASTDR, 1991 (PCBs).

Vreman, K., N.G. van der Veen, E.J. van der Molen, and W.G. de Ruig. 1986. "Transfer of Cadmium, Lead, Mercury and Arsenic form Feed into Milk and Various Tissues of Dairy Cows: Chemical and

REFERENCES FOR TERRESTRIAL REFERENCE VALUES

Pathological Data". Neth. J. Agricu. Sci. 34:129-144. Cited in Eisler, 1991 (Arsenic).

Walker, A.I.T., D.E. Stevenson, J. Robinson, R. Thorpe, and M. Roberts. 1969. "The Toxicology and Pharmacodynamics of Dieldrin (HEOD): Two-Year Oral Exposure to Rabbits and Dogs". Toxicol. Appl. Pharmacol. 15:345-373.

Wasserman, D. M., M. Cucos, et.al. 1973. "Function of Adrenal Gland-Zona Fasciculata in rats Receiving Polychlorinated Biphenyls". Environ Res. 6:334-338. Cited in ASTDR, 1991 (PCBs).

Wentink, G.H., T.J. Spierenburg, G.J. de Graaf, and A.C.A. van Exsel. 1985. A Case of Chronic Zinc Poisoning in Calves Fed with Zinc-Contaminated Rouphage. Veterinary Quarterly 7:153-157. Cited in Eisler, Ronald. 1990. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Department of the Interior, Fish and Wildlife Service. Biological Report 85(1.23), July 1991.

Will, M.E., and G.W. Suter. 1994. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-126.

Will, M.E., and G.W. Suter. 1994. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-85/RI.

White, D.H., and M.P. Dieter. 1978. "Effects of Dietary Vanadium in Mallard Ducks". J. Toxicol. Environ. Health 4:43-50. Cited in Opresko et.al., 1994.

White K.L. Jr, and V.M. Sanders, D.W. Barnes, et.al. 1985. "Toxicology of 1,1,2-Trichloroethane in the Mouse". Drug Chem Toxicol 8:333-356. Cited in ASTDR, 1988 (1,1,2-Trichloroethane).

White, D.H., and M.T. Finley. 1978. "Uptake and Retention of Dietary Cadmium in Mallard Ducks". Environ. Res. 17:53-59

Wolf, M.A., V.K. Rowe, D.D. McCollister, et.al., 1956. "Toxicological Studies of Certain Alkylated Benzenes and Benzene." AMA Arch. Ind. Health. Cited in IRIS, Accessed Oct. 1992.

World Health Orginization (WHO). 1984. Chlordane. Environmental Health Criteria 34. World Health Orginization, Geneva, Switzerland. Cited in Eisler, Ronald. 1990.

NOTE: Some of the references in this list are not specifically referenced in the proceeding table. This reference list also includes other toxicity values not used in the development of the terrestrial reference values.

APPENDIX V SAMPLING STATION CHARACTERIZATION DATA SHEETS

SAMPLING STATION CHARACTERIZATION DATA SHEET

Station Number: <u>65 - 5D/Sw04</u> Date: <u>May 15, 95</u> Time: <u>16:50 (Sw)</u>
Samplers: AMB, PAM, JLH Date: May 18, 95 (50/50) Time: 9:15 (06) 9:10(1
Water Body: COURTHOUSE POND State: N.C. County: ONSLOW
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net Ponar Kemmerer Sediment Corer Spoon Other: SMBS URFACE
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Urban Industrial Other: BULLDDEING TRAINING ARE
Shore Vegetation: BLACK WILLOWS, SWEETGUM, JULIP POPLAR, LOBLOLLY
PINE, WAX MYRTLE, SWEET BAY, AMERICAN HOLLY, FEITERBUSH
Aquatic Vegetation: NONE WATERSHIELD (Brasenia Schreben)
· · · ·
Estimated Stream Width:ft Est. Stream Depth:ft Riffle:ft Run:ft Pool;ft
Stream Type: Cold Water Warm Water Velocity: North Channelized: Yes North
Canopy Cover: Open Partly Open Partly Shaded Shaded
Sediment/Substrate:
Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic Other: DECAYING ORGANICS
Sediment Oils: Absent Slight Moderate Profuse HNu
Ponar Grab: Number of Jars Filled with Sediments Replicate: #1: 4 Replicate #2: 3 Replicate #3: 2
Sediment Description: SILT with SOME SMOD. BELOWS "- DRGANIC
MATERIAL DECOMPOSING PEAT

Water:

	Depth	Temp. °C	pH (s.u.)	Dissolved Oxygen (mg/L)	Conductivity (micromhos/cm)	Salinity (ppt)
s/95	SURFACE	30.4	7.2.	10.6	14	•
ļ	~4' (BITAM)	17.3	6.81	2.9	2 21.5	
6 f95 }	SURFACE	20.9	6.88	7.2	13	
. ସ	BOTTOM	17.4	6.7	3.0	18.1	
Water	Odors: Norm	Slick S	۲.	Secchi:	ther:	ft.
Turbic	•	Slightly Tu				or: RAY
Weath	ner Conditions:	UNNY, HO	T, HUMID	80-90°F	Tide:	In Out
		•				

SAMPLING STATION CHARACTERIZATION DATA SHEET

Station Number: <u>65-SD/SW05</u> Date: <u>MAY 16, 195</u> Time: <u>13:35</u> (Sw)
Samplers: AMB, JLH, PATA Date: MAY 17, 195(Sof Time: 11:40
Water Body: POWERLINE POND State: N.C. County: ONSLOW
Sample Type: Fish Benthic Macroinvertebrate Sediment Surface Water
SAMPLING EQUIPMENT: Seine Gill Net (Ponar) Kemmerer Sediment Corer Spoon Other: 515 H, Koop NETS
Riparian Zone/Instream Features
Predominant Surrounding Land Use: Forest Urban Industrial Other: Some ADJACENT DIRT RDS
Shore Vegetation: BLACK WILLOW, SUBET GUM, WAX MYRTLE, SMOORT SUMA C
(1) WATER OAK, SPARTINA Sp.
Aquatic Vegetation: FRAGRANT POND LILY, PENNYWORT, GREEN ALGAE (UNK)
Aquatic vegetation.
SPARTINA SP.
SPARTINA Sp.
erdenne i obernen
SPARTINA Sp. Estimated Stream Width: ft Est Stream Depth: 4 ft Riffle: ft Run:ft Pool;ft
SPARTINA sp. Estimated Stream Width: Image: Cold Water Warm Water Velocity: Image: Cold Water I
SRATINA SP. Estimated Stream Width: Image: ft Estimated Stream Width: Image: ft Stream Type: Cold Water Warm Water Velocity: Image: Cold Water Warm Water Velocity: Image: Channelized: Yes Ng Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded
SRATTINA Sp. Estimated Stream Width: It Est. Stream Depth: It Riffle: It Run: It Pool: It Stream Type: Cold Water Warm Water Velocity: Neare Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Sediment/Substrate: Stream Strea
SPARTINA Sp. Estimated Stream Width:
SPARTINA Sp. Estimated Stream Width: Image: ft Est Stream Depth: Image: ft Riffle: ft Run: ft Pool: ft Stream Type: Cold Water Warm Water Velocity: Image: ft Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Sediment/Substrate: Sediment Odors: Normal Sewage Petroleum Chemical Image: Other: Image: Other: Sediment Oils: Absent Slight Moderate Profuse HNu

Water:

1

	Depth	Temp. °C	pH (s.u.)	Dissolved Oxygen (mg/L)	Conductivity (micromhos/cm)	Salinity (ppt)
	Surface.	27-8	7:62	9.0	196	
· 🕻	BOTTOM (~2')	24.1	6.32	3.0	214	
						-
		•				
		a) Sewage	Petroleum	Chemical O		
ter Od	dors: Norm urface Oils:	Slick S		one Secchi:	ther: e Water Cold	
ter Od ter Su bidity	dors: Norm urface Oils: y: Clear	Slick S Slightly Tu	Sheen No rbid Turb	one Secchi:	e Water Colo	
ter Od ter Su bidity	dors: Norm urface Oils: y: Clear Conditions:	Slick S Slightly Tu	Sheen No rbid Turb	id Opaque	e Water Colo	or:

•	• -			Length	Weight	
Station	Fish Species	Date	Time	(cm)	(grams	
FS04	Bluegill	5-17-95	900	12.6	30	
FS04	Bluegill	5-17-95	900	17	65	
FS04	Bluegill	5-17-95	900	11.5	105	
FS04	Bluegill	5-17-95	900	11.6	*	
FS04	Bluegill	5-17-95	900	11.5	*	
FS04	Bluegill	5-17-95	900	10.5	*	
FS04	Bluegill	5-18-95	1600	14	50	
FS04	Bluegill	5-19-95	1130	12.7	210	
FS04	Bluegill	5-19-95	1130	12.2	*	
FS04	Bluegill	5-19-95	1130	12.4	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-19-95	1130	12.3	*	
FS04	Bluegill	5-19-95	1130	11	*	
FS04	Bluegill	5-19-95	1130	12	*	
FS04	Bluegill	5-22-95	1500	14	80	(Possible hybrid, enlarged
FS04	Bluegill	5-22-95	1500	18	60	dorsal end in front of dorsal
FS04	Bluegill	5-22-95	1500	14	50	fin)
FS04	Bluegill	5-22-95	1500	15	50	·
FS04	Bluegill	5-22-95	1500	13	150	
FS04	Bluegill	5-22-95	1500	12	*	
FS04	Bluegill	5-22-95	1500	12.5	*	
FS04	Bluegill	5-22-95	1500	12.5	*	
FS04	Bluegill	5-22-95	1500	11	*	
FS04	Bluegill	5-22-95	1500	12	120	
FS04	Bluegill	5-22-95	1500	12.3	*	
FS04	Bluegill	5-22-95	1500	12	*	
FS04	Bluegill	5-22-95	1500	12.8	*	
FS04	Bluegill	5-22-95	1500	12	120	

<u>Station</u> FS04 FS04 FS04	Fish Species Bluegill Bluegill Bluegill	<u>Date</u> 5-22-95 5-22-95 5-22-95	Time 1500 1500 1500 Minimum Maximum Average Count	Length (cm) 12 12.5 11 10.5 18 12.6 32	Weight (grams * * NA 210 34	<u>Comments</u>
FS04 FS04 FS04 FS04 FS04 FS04 FS04	Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish Redear Sunfish	5-17-95 5-17-95 5-17-95 5-17-95 5-22-95 5-22-95 5-22-95	900 900 900 900 1500 1500 1500 Minimum Maximum Average Count	12.5 12.3 17.5 17 12 12 13 12.5 12 17.5 13.6 8	60 25 70 65 25 80 * * 0 80 40.625	
FS05 FS05 FS05 FS05 FS05 FS05	Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass Largemouth Bass	5-16-95 5-16-95 5-16-95 5-16-95 5-16-95 5-16-95	1600 1600 1600 1600 1600 1600	10.4 14 11.7 14.2 3.9 22	15 35 20 35 NM 150	

Station FS05 FS05 FS05	<u>Fish Species</u> Largemouth Bass Largemouth Bass Largemouth Bass	Date 5-17-95 5-17-95 5-17-95	<u>Time</u> 1000 1000 Minimum Maximum Average Count	Length (cm) 41 28.5 27 3.9 41 19.2 9	Weight (<u>grams</u> 1200 300 225 NA 1200 220	<u>Comments</u>
FS05 FS05	Redear Sunfish Redear Sunfish	5-16-95 5-16-95	1600 1600	11.3 10.3	25 20	
FS05	Redear Sunfish	5-16-95	1600	8	10	
FS05	Redear Sunfish	5-16-95	1600	7.9	12	
FS05	Redear Sunfish	5-16-95	1600	11	20	
FS05	Redear Sunfish	5-16-95	1600	11	25	
FS05	Redear Sunfish	5-16-95	1600	10.9	25	
FS05	Redear Sunfish	5-16-95	1600	10.5	25	
FS05	Redear Sunfish	5-16-95	1600	7.4	10	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
FS05	Redear Sunfish	5-16-95	1600	11.3	20	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
FS05	Redear Sunfish	5-16-95	1600	7.3	5	
FS05	Redear Sunfish	5-16-95	1600	12.2	18	
FS05	Redear Sunfish	5-16-95	1600	10.5	15	
FS05	Redear Sunfish	5-16-95	1600	11	15	
FS05	Redear Sunfish	5-16-95	1600	12	30	
FS05	Redear Sunfish	5-16-95	1600	7.4	5	
FS05 FS05	Redear Sunfish Redear Sunfish	5-16-95	1600	7.2	5	
FOUD	Receat Southish	5-16-95	1600	11.7	25	

				Length	Weight	
Station	Fish Species	<u>Date</u>	<u>Time</u>	<u>(cm)</u>	(grams	Comments
FS05	Redear Sunfish	5-16-95	1600	14.7	95	
FS05	Redear Sunfish	5-16-95	1600	14.2	55	
FS05	Redear Sunfish	5-16-95	1600	15	70	
FS05	Redear Sunfish	5-17-95	1000	20.5	200	
FS05	Redear Sunfish	5-17-95	1000	20	140	
FS05	Redear Sunfish	5-18-95	1500	25	300	
FS05	Redear Sunfish	5-18-95	1500	22.5	220	
FS05	Redear Sunfish	5-18-95	1500	17	100	
FS05	Redear Sunfish	5 -18 -95	1500	19	120	
FS05	Redear Sunfish	5-18-95	1500	19	130	
FS05	Redear Sunfish	5-18-95	1500	16.5	70	
			Minimum	7.2	5	
			Maximum	25	300	
			Average	13.0	59	
			Count	31		
5005	Diversit	E 40.0E	4000	40.4	00	
FS05	Bluegill	5-16-95	1600	12.1	20	
FS05	Bluegill	5-16-95	1600	11.7	25	
FS05	Bluegill	5-16-95	1600	9.2	10	
FS05	Bluegill	5-17-95	1000	13.6	40	
F\$05	Bluegill	5-17-95	1000	11.6	35	
FS05	Bluegill	5-17-95	1000	13	35	
F\$05	Bluegill	5-17-95	1000	11.4	25	
FS05	Bluegill	5-17-95	1000	11.5	25	
FS05	Bluegill	5-17-95	1000	12.6	35	
F\$05	Bluegill	5-17-95	1000	11.7	30	
F\$05	Bluegill	5-17-95	1000	11.5	25	
FS05	Bluegill	5-17-95	1000	11.4	25	

)

				Length	Weight	
<u>Station</u>	Fish Species	<u>Date</u>	<u>Time</u>	<u>(cm)</u>	<u>(grams</u>	<u>Comments</u>
FS05	Bluegill	5-18-95	1500	15	60	
FS05	Bluegill	5-18-95	1500	14.1	70	
FS05	Bluegill	5-18-95	1500	13.5	75	
FS05	Bluegill	5-18-95	1500	16.2	100	
FS05	Bluegill	5-18-95	1500	13.4	80	
FS05	Bluegill	5-18-95	1500	12	70	
FS05	Bluegill	5-18-95	1500	17.7	140	
FS05	Bluegill	5-16-95	1600	15.5	65	
FS05	Bluegill	5-17-95	1000	16.5	100	
FS05	Bluegill	5-17-95	1000	14.5	65	
FS05	Bluegill	5-17-95	1000	17	120	
FS05	Bluegill	5-17-95	1000	13.5	55	
FS05	Bluegill	5-18-95	1500	18.1	125	
FS05	Bluegill	5-18-95	1500	20	120	
FS05	Bluegill	5-18-95	1500	19.3	145	
FS05	Bluegill	5-18-95	1500	17	110	
FS05	Bluegill	5-18-95	1500	15	60	
FS05	Bluegill	5-18-95	1500	14.5	60	
			Minimum	9.2	10	
			Maximum	20	145	
			Average	14.1	65	
			Count	30		

	Collection		Length	Weight		Sample
<u>Date</u>	Time	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	Analysis
5-17-95	900	65-FS04-BG02	11.5	105	65-FS04-BG01W	Whole Body
5-17-95	900	*	11.6	*		Finele Deug
5-17-95	900	*	11.5	*		
5-17-95	900	*	10.5	*		
5-19-95	1130	65-FS04-BG04	12.7	210		
5-19-95	1130	*	12.2	*		
5-19-95	1130	*	12.4	*		
5-19-95	1130	*	12	*		
5-19-95	1130	*	12	*		
5-19-95	1130	*	12.3	*		
5-19-95	1130	*	11	*		
5-19-95	1130	*	12	*		
5-22-95	1500	65-FS04-BG09	13	150		
5-22-95	1500	*	12	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	11	*		
5-22-95	1500	65-FS04-BG11	12	120		
5-22-95	1500	*	12	*		
5-22-95	1500	*	12.5	*		
5-22-95	1500	*	11	*		

	Collection		Length	Weight		Sample
<u>Date</u>	Time	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-17-95	900	65-FS04-BG01	17	65	65-FS04-BG01F	Fillet
5-18-95	1600	65-FS04-BG03	14	50		
5-22-95	1500	65-FS04-BG06	18	60		
5-22-95	1500	65-FS04-BG07	14	50		
5-22-95	1500	65-FS04-BG08	15	50		
5-22-95	1500	65-FS04-BG10	12	120		
5-22-95	1500	*	12.3	*		
5-22-95	1500	*	12	*		
5-22-95	1500	*	12.8	*		

	Collection		Length	Weight		Sample
Date	Time	Sample Number	<u>(cm)</u>	(grams)	<u>New Sample Numb</u>	<u>Analysis</u>
5-17-95	900	65-FS04-RS01	17.5	70	65-FS04-RS01W	Whole Body
5-17-95	900	65-FS04-RS02	17	65		مىلىمىنى ئارىخى ئارىخى ئارىخ
5-17-95	900	65-FS04-RS03	12	25		
5-22-95	1500	65-FS04-RS04	12	80		
5-22-95	1500	*	13	*		
5-22-95	1500	*	12.5	*		

	Collection		Length	Weight		Sample
Date	Time	Sample Number	<u>(cm)</u>	(grams)	<u>New Sample Numb</u>	<u>Analysis</u>
5-16-95	1600	65-FS05-LB01	22	150	65-FS05-LB01W	Whole Body
5-17-95	1000	65-FS05-LB03	28.5	300		
5-17-95	1000	65-FS05-LB04	27	225		

	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	<u>New Sample Numb</u>	<u>Analysis</u>
5-17-95	1000	65-FS05-LB02	41	1200	65-FS05-LB01F	Fillet

	Collection		Length	Weight		Sample
Date	<u>Time</u>	Sample Number	<u>(cm)</u>	<u>(grams)</u>	<u>New Sample Numb</u>	<u>Analysis</u>
5-16-95	1600	65-FS05-RS01	14.2	55	65-FS05-RS01W	Whole Body
5-16-95	1600	65-FS05-RS02	15	70		
5-18-95	1500	65-FS05-RS07	17	100		
5-18-95	1500	65-FS05-RS10	16.5	70		

	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-17-95	1000	65-FS05-RS03	20.5	200	65-FS05-RS01F	Fillet
5-17-95	1000	65-FS05-RS04	20	140		
5-18-95	1500	65-FS05-RS05	25	300		
5-18-95	1500	65-FS05-RS06	22.5	220		
5-18-95	1500	65-FS05-RS08	19	120		
5-18-95	1500	65-FS05-RS09	19	130		

	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	<u>Analysis</u>
5-16-95	1600	65-FS05-BG01	15.5	65	65-FS05-BG01W	Whole Body
5-17-95	1000	65-FS05-BG03	14.5	65		•
5-17-95	1000	65-FS05-BG05	13.5	55		
5-18-95	1500	65-FS05-BG10	15	60		
5-18-95	1500	65-FS05-BG11	14.5	60		

	Collection		Length	Weight		Sample
<u>Date</u>	<u>Time</u>	Sample Number	<u>(cm)</u>	(grams)	New Sample Numb	Analysis
5-17-95	1000	65-FS05-BG04	17	120	65-FS05-BG01F	Fillet
5-17-95	1000	65-FS05-BG02	16.5	100		
5-18-95	1500	65-FS05-BG06	18.1	125		
5-18-95	1500	65-FS05-BG07	20	120		
5-18-95	1500	65-FS05-BG08	19.3	145		
5-18-95	1500	65-FS05-BG09	17	110		

* Fish were measured individually but weighed as a group

APPENDIX X BENTHIC MACROINVERTEBRATE LABORATORY BENCH SHEETS

88 S.C

1. 1.

	SITE CC	ENVIRONI CAMP LESEUNE, NC			ob Number/Task:	15825.001
Coll Date:	TIG-	Prelim. Sorter: MJ			Sample ID:	65-BN04-0,
-	pied Taxa:		spiit sorter:		. .	
				15	Data Islandi	alad the -
	ne Budget: _		Presort ID Time:	0.5	Date-identifier:	6/26/95M
		Split/Midge an	d worm ID Time:		Date-Identifier:	
	د د بهم مخبر و المحدور به	n an	QA/QC Time:		• • • • • •	· · · ·
		1		.		· · ·
QC	Taxonomic		Total	Presort	Split/QA/QC	
Check	Order	Taxon	Number =	Number	+ Number	Comments
· .	······································				• •	·
		1		· · · · ·	- · ·	
	A_/	D APCA	HAA-	· · · · · · · · · · · · · · · · · · ·		·
······································	Д	U				
<u> </u>		· · · · · · · · · · · · · · · · · · ·				• .
		· · ·				
			······································		• <u></u> .	
•••••••••••••••••••••••••••••••••••••••			······································			
· · · ·						
· <u> </u>						
	••••••••••••••••••••••••••••••••••••••				• 	<u> </u>
		· ·				
			······································			••••••••••••••••••••••••••••••••••••••
						<u></u>
·			. <u></u>			
					• <u></u>	
·		·····	·		. <u></u>	
	<u>. X </u>					
<u> </u>		·	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>				··	·····
, ,					-	
			March 7757 (1997) 1997 - 1997 (1997) 1997 - 1997			·
` <u> </u>						
				· · · · ·	- <u> </u>	
					······································	
					,	· · · · · · · · · · · · · · · · · · ·
lotes:					Page	of

Coll Date: <u>5/95</u>	ENVIRON, INC CAMP LETEUNE NC Prelim. Sorter: MJG	- Split Sorter:	Job Number/Task: <u>15825,00</u> /- Sample ID: <u>65 BN04-L</u>		
Subsampled Taxa: ID Time Budget:	<i>I.5</i> P Split/Midge and	resort ID Time: <u>0,5</u> worm ID Time: QA/QC Time:	Date-Identifier: <u>6/26/95</u> 2000 Date-Identifier:		
QC Taxonomic Check Order	Taxon	Total Presort Number = Number	Split/QA/QC + Number Comments		
DIPTERA	Chapporus sp.	2			
	······································				
		······			
		•			
		······································			

Coll Date	n: <u>5/77 65</u> e: <u>5/95</u> ampled Taxa: _	CAMP LEJEUNE NC Prelim. Sorter: <u>MJC</u>	Split Sorter	r:	·	65 BN04-03
ID Time Budget:			Presort ID Time and worm ID Time QA/QC Time		Date-Identifier: Date-Identifier:	6/26/95m
QC Check	Taxonomic Order	Taxon	Total Number =	Presort = Number	Split/QA/QC + Number	Comments
	DIPTERA	Chaphorus sp.	4	· ·		
					• • • • • • • • • • • • • • • • • • •	
					• • • • • • • • • • • • • • • • • • •	
······································				······································		······································
·						
	·			<u></u>	• • • • • • • • • • • • • • • • • • •	
······	······································				· ······	······································
					· · · · · · · · · · · · · · · · · · ·	
			-			••••••••••••••••••••••••••••••••••••••
				· · · · · · · · · · · · · · · · · · ·		
					•	<u></u>
	·			· · · · · · · · · · · · · · · · · · ·		
otes:	8:00-8:70				Page	of

Client: BAKER ENVIRON, INC.				Job Number/Task: 15825.001		
		CAMP LEJEUNE, NC	-	Sample ID: 6		
A -	e: 5/95	Prelim. Sorter: JJJ	Split Sorter:			
	ampled Taxa:	a a construction and a construction of the second				
	lime Budget:	1,5 F	Presort ID Time: 0,5	Date-Identifier: 6	126/55 mon	
			worm ID Time: <u>3.0</u>	_ Date-Identifier: <u>6</u> _ Date-Identifier: <u>6</u>	121/9,mm	
. *• · ·		A second s	QA/QC Time: .5			
· · ·		and an		— · • · · · · ·		
QC	Taxonomic		Total Presort	Split/QA/QC		
Check	Order	Taxon	Number = Number	+ Number	Comments	
·	Ran Kanan - Miri Carabanan - San I	and the second secon	ан анд улта, сланчина катадараат, с. с		· · · · · · · · · · · · · · · · · · ·	
بالمعمود فالمراك		2. Since advance (Company) and an entry sector of the company o	а на чавура ангии - Малефу II-N. 	·· ·		
meg i	DIPTERA	Abla bes muyin ramphe s.	, <u> </u>	·····	· · · · ·	
MEG	It	Cricotepus pleggas			VEN	
MEG-	<u>4 100</u> ,	Psectrocladius elatus			VEN	
MEG	<u> </u>	Tanytarsus SA.	<u> </u>		• •• ••	
	n a service a service a service se	na di pina contrante en entre se succes presentente e contrante con	and a state of the second s		. ·	
a and a second second		การการแก่งหม่างที่สี่มีมีการการการการการการการการการการการการการก	u september			
مهریت جند ری د در 	en son son son son son son son son son so	un in Beneren wurdt i sondietstelstelstelstelstelstelstelstelstelst	20,001,5,1,2,5,00,200 00,5,000000		· · · · · · · · · · · · · · · · · · ·	
	na anna an sean - Air ann an Air a	алан адар сара с 12 мда — Алан тайра салан байлан тайран байлан алан байлан тайралан байлан тайралан байлан ба 	a un una principal de la companya de			
15 c. and r. and r. and r. and r.	an i shan a shi shana in ta mana	in a second s	андайн нуль улагаан нэ харибий нь тэрээн 			
·		n na	n variogen (* 1999) 2010 - Alexandro (* 1999) 4	· · · · · · · · · · · · · · · · · · ·		
	i volas no andre manario enterno de	an a				
-6		and a second				
	n na kan kan kan kan kan kan kan kan kan					
	and a construction of the second s					
	an an ang san panangan pang ing an an an an ang					
	مەرىمە تەرىپىرىسىنىر بىر بىر					
	<u></u>				<u></u>	
		ango nyo kao wakaza kao kao nyo mana Arikana. Manana kao manana kao kao kao kao kao kao kao kao kao ka				
	······					
		•	entering and a state and a state of the stat	and the second s		
		ອອງຊີ້ 1 ເບັນຊີມ ແລະ	and and the second an	- 164 6		
			en angenaris - Talsforg sa			
			en vigname ungelen als er allere er en andere en er er en andere er			
	Annual and a second sec			<u> </u>		
	anti-anti-anti-anti-anti-anti-anti-anti-					
	······································		and a state of the			
		مېرومې د د مېرو د د م				
		and a second	and a second state of the			
		an a	an a			
1. e 1. ministra - e salare e san		աստաստանությունները Դարտեստանությունները որություններըը։ Դարտեստանությունները	enalgen un yn Llewin yn ar fan yn arann		<u> </u>	
		a na angga miningan a nagawanan ng naga t	AND CONTRACTOR OF A CONTRACTOR			
Notes				Page	of	

6/26 8:30-9:00 CHILLOW 12:30-1:30 6/20 12:00 -2:00

ocation:	BAKER ER SITE 65 C	AMPLED	TUNE A	IC:	*	Theorem		= Samp)ie fD: 🧷	55 BI	vos-c
oll Date:		Prelim, So	ter: JJ)	an si a	Split	Sorter:		S.m. S.			રેકે પ્રચ્યુ
	npled Taxa:						San an S. Roman at Respondence in	- Marine Marine Marine Marine Marine	1. 		
ID Time Budget:		1.5		E	Proport II	Time	1.0	-Date-Ider	titior: /	1. 2%	arm
		113	Split/Midg					Date-Ider		1201	1510
	an ana ana ana ana ana ana ana ana ana	a se se se se s	SpirvMidg					Date-Idei			
-					^{o,_} QA/QC	; ime:	· · · ·				· · · ·
	an a	2			ar an a' an a'			• •	at the stage	11	<i></i>
QC	Taxonomic				So Tota		Presort	Split/QA/		mu C	- 1
Check	Order		axon	s inter states	Numt)er.:=.	Number	+ Numbe	" we summaries	Com	ments-
· ·	·····	-			4.1 2000 - 1944 - 460 Table	مەردە يەروپىيە دەر مەروپىيە	алааны (с. т. 16-19) К. С. А. С. С. Чанала П. Самана (с. т. 16-19) К. С. А. С. С. Чанала (с. т. 16-19) Самана (с. т. 16-19) К. С. А. С.	- and white			
<u> </u>				<u>.</u> .		• • • • • • • • • • • • • • • • • • •					ners and t
ĒD#Ē	MEROPTERA	Caenis	punctar	6		Mar 4	Mary and the	1. Barris (1. San (1. San)	£	Same and S	
			/		الي محمد العرب	ange	and the second second states	Sand Same	740 - 24 H (1999)	25 1. men 1991 - 1995	
		· · ·	•		t. 	ار میں موجود اور میں	and a second sec	e . e 	the second second		AND AND A
					esets and reverse		The second states	A AL SCALL		. James	
		· · ·								view loads to reason in the	
		· · ·						· • • • • • • • • • • • • • • • • • • •			
 	TELA			and the state	2		· · · · · · · · · · · · · · · · · · ·				
	1524	Chrysop	<u>s spi</u>	· · · · · · · · · · · · · · · · · · ·				андар один н. н. тарар жаран. - <u>на при страно</u> ни		·	
				••••••••	- The case of a state of the st	- Ang Palat or of and		age of the latence of the latence	۵۰۰ אני א נוס ייי. אני (א נוסיי י)		, r 494 W
										Magata - 1485-147 - 47 Magata - 1485-147 - 47	ar reference
				p. 10. 11	antian sanan sanan sanan sa	• • • • • • • • • • • • • • • • • • •		and and a set option and general to a	۸. ۲ ۰ میں میر د. منب	Magangapaté Japan Kuratés Kungangapatén Japan Kuratés	
					· •• •• ••		аналан каланда жаландаг к 1971 т	-	2 cylenseller ave 12 ar		
				14. A. J. J. M. M. M.	was was generated	و ، مدين 	(c) Property approximation in the second se second second se second second sec second second sec		·	f mar 10 have and 1 a la 1	ingenerated for the set
			·				ng an , chang na Min v ga e dan na ar Anta Mi		وي مېر سر ۲۰ موريده	888 v???v= - *	ang panganan
						cia entrenargentia e al	unggan yaan ya aanaa ka k		n so, in anderso a	ne as relation	y same
					Colore of the sec			 			
					•••••	and the second					
								······			
	·····					·				<u></u>	
	**** <u></u>							• · ·			
<u> </u>				- 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 140 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407 - 1407		, adjesta varit Barute					9,000 (C. 1997) (C. 1997)
			**************************************						·····		
	<u> </u>	·	1941 - 6 484447	1. p. spilotet 11. s		an train air		n is in an	2 years - Joseph - Antonio - An	Alle - gradatavitate-	· •991498894994-444
	<u> </u>		næ i 3-milite av				in anderstation of the state of	anders a subject and an	۵۰٬۱۰۱ میرد. مربق ۲۰۰۰ میرد. مربق ۲۰۰۰ میروند.		نحب
			• 1998/4-1 • .7	·	annanda an sua a sus	، رسید است. استان استان اس				un	w_ w.wormenw
			···	149-14-14740-1477-1777				,	د میں ایروں اور		
·					n. sala na parma sa mu		در ۱۹۷۵ میلاد در این میلود این این میلود این میلود ای	1910an order angestani ne v		egenerale of the ordered	
						**************************************				and the first is	
						100-000-00-00-00-00-00-00-00-00-00-00-00		angeneration and an and the second statements	e North Catalogue 17 a	an m	
					t an a antere systematic		ويدمه مد مربعة مربعة المربعة من المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة مربعة المربعة ال			· ····	
N		<u></u>			••••••••••••••••••••••••••••••••••••••		ی بیست به به این ایمیوید	·			
	<u></u>	· · · · ·	· · · ·					annualities and the states			
······				1414 441 4494					· · ·		
	<u></u>							5	,		
			2		· ····································						

. .

à.

•

,

Location: <u>SITE 65</u> CAMP LEJEUNE Coll Date: <u>5/95</u> Prelim. Sorter: <u>JJD</u> Subsampled Taxa;			Split Sorter:		Sample ID:	<u>15885,00°</u> 65 BN05-	
ID 1	lime Budget:	Split/Midge an	Presort ID Time: 0,5 nd worm ID Time: QA/QC Time:		Date-Identifier: <u>6/26/95</u> Date-Identifier:		
QC heck	Taxonomic Order	Taxon	Total Number =	Presort Number	Split/QA/QC + Number	Comments	
					· · · · · · · · · · · · · · · · · · ·	9	
Ē	PHEMEROPTERA	Caenis punctor		·	· · · · · · · · · · · · · · · · · · ·		
			·····				
	·····			······································		• <u>•••••</u> ••	
	DIPTERA	Abla besmyis ramphe			· · · · · · · · · · · · · · · · · · ·	<u>eranten an an</u>	
	<u>Q.(</u>	<u> </u>	y ·				
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
				·····			
						ی . تر در میروند. ر	
		en e					
	. <u> </u>				· · · · · · · · · · · · · · · · · · ·		
			· · ·				
						· · · · ·	
••••••••••••••••••••••••••••••••••••••				·····	• • • • • • • • • • • • • • • • • • •	CA., ()	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·				
and the same of a					• • • • • • • • • • • • • • • • • • •	. <u></u>	
ی محمد کرد. محمد محمد کرد محمد محمد کرد محمد محمد کرد	a ser a s A ser a s		 Miller Magneton in Verblagen engeligtere 				

an syl							
· · · · · · · · · · · · · · · · · · ·							
	n in the set of the wave the set of the set		an a		• • • • • • • • • • • • • • • • • • •		
		Arris Edda arrist	923 				
	· · · · · · · · · · · · · · · · · · ·			<u> </u>	• • • • • • • • • • • • • • • • • • •		
					· · · · · · · · · · · · · · · · · · ·	······································	
	·····				• •		
	· · · · · · · · · · · · · · · · · · ·		A1767 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		• • • • • • • • • • • • • • • • • • •		